Abstract
We present a novel canonical automaton model, based on register automata, that can easily be used to specify protocol or program behavior. More concretely, register automata are reminiscent of control flow graphs: they comprise a finite control structure, assignments, and conditionals, allowing to assign values of an infinite domain to registers (variables) and to compare them for equality. A major contribution is the definition of a canonical automaton representation of any language recognizable by a deterministic register automaton, by means of a Nerode congruence. Not only is this canonical form easier to comprehend than previous proposals, but it can also be exponentially more succinct than these. Key to the canonical form is the symbolic treatment of data languages, which overcomes the structural restrictions in previous formalisms, and opens the way to new practical applications.
Supported in part by the European FP7 project CONNECT (IST 231167).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Milo, T., Neven, F., Suciu, D., Vianu, V.: XML with data values: typechecking revisited. J. Comput. Syst. Sci. 66(4), 688–727 (2003)
Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)
Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data words. In: Proc. 4th Alberto Mendelzon Int. Workshop on Foundations of Data Management, Buenos Aires, Argentina. CEUR Workshop Proceedings, vol. 619 (2010)
Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)
Bielecki, M., Hidders, J., Paredaens, J., Tyszkiewicz, J., den Bussche, J.V.: Navigating with a browser. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 764–775. Springer, Heidelberg (2002)
Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theoretical Computer Science 411, 702–715 (2010)
Bojanczyk, M.: Data monoids. In: STACS, pp. 105–116 (2011)
Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Transactions on Computational Logic (to appear, 2011)
Bouyer, P.: A logical characterization of data languages. Information Processing Letters 84, 200–202 (2001)
Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed languages. Information and Computation 182(2), 137–162 (2003)
Francez, N., Kaminski, M.: An algebraic characterization of deterministic regular languages over infinite alphabets. Theoretical Computer Science 306(1-3), 155–175 (2003)
Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.-H., Fernau, H., MartÃn-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010)
Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)
Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z., Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Challenges: Towards Emergent Connectors for Eternal Networked Systems. In: ICECCS, pp. 154–161 (2009)
Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134(2), 329–363 (1994)
Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86(1), 43–68 (1990)
Lazic, R., Nowak, D.: A unifying approach to data-independence. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 581–595. Springer, Heidelberg (2000)
Maler, O., Pnueli, A.: On recognizable timed languages. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 348–362. Springer, Heidelberg (2004)
Nerode, A.: Linear Automaton Transformations. Proceedings of the American Mathematical Society 9(4), 541–544 (1958)
Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal of Computing 16(6), 973–989 (1987)
Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE Trans. on Software Engineering 30(1), 29–42 (2004)
Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence. RFC 6121 (Proposed Standard) (March 2011)
Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)
Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B. (2011). A Succinct Canonical Register Automaton Model. In: Bultan, T., Hsiung, PA. (eds) Automated Technology for Verification and Analysis. ATVA 2011. Lecture Notes in Computer Science, vol 6996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24372-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-24372-1_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24371-4
Online ISBN: 978-3-642-24372-1
eBook Packages: Computer ScienceComputer Science (R0)