Abstract
We discuss some models for autonomously motivated exploration and present some recent results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schmidhuber, J.: A Possibility for Implementing Curiosity and Boredom in Model-Building Neural Controllers. In: Meyer, J.A., Wilson, S.W. (eds.) International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 222–227. MIT Press, Cambridge (1991)
Schmidhuber, J.: Developmental Robotics, Optimal Artificial Curiosity, Creativity, Music, and the Fine Arts. Connection Science 18(2), 173–187 (2006)
Singh, S., Barto, A.G., Chentanez, N.: Intrinsically Motivated Reinforcement Learning. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 1281–1288. MIT Press, Cambridge (2005)
Oudeyer, P.-Y., Kaplan, F.: What is intrinsic motivation? A typology of computational approaches. Frontiers in Neurorobotics, 1 (2007)
Oudeyer, P.-Y., Kaplan, F., Hafner, V.: Intrinsic Motivation Systems for Autonomous Mental Development. IEEE Transactions on Evolutionary Computation 11(1), 265–286 (2007)
Brafman, R.I., Tennenholtz, M.: R-max - A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning. JMLR 3, 213–231 (2003)
Kakade, S.M.: On the Sample Complexity of Reinforcement Learning. PhD thesis, University College London (2003)
Jaksch, T., Ortner, R., Auer, P.: Near-optimal Regret Bounds for Reinforcement Learning. JMLR 99, 1563–1600 (2010)
Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with Gaussian processes. In: 22nd International Conference on Machine Learning, ICML 2005, pp. 201–208. ACM, New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Auer, P., Lim, S.H., Watkins, C. (2011). Models for Autonomously Motivated Exploration in Reinforcement Learning. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2011. Lecture Notes in Computer Science(), vol 6925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24412-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-24412-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24411-7
Online ISBN: 978-3-642-24412-4
eBook Packages: Computer ScienceComputer Science (R0)