Abstract
The key to granular computing is to make use of granules in problem solving. However, there are different granules at different levels of scale in data sets having hierarchical scale structures. Therefore, the concept of multi-scale decision systems is introduced in this paper, and a formal approach to knowledge acquisition measured at different levels of granulations is also proposed, and some algorithms for knowledge acquisition in inconsistent multi-scale decision systems are proposed with illustrative examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2002)
Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centered information processing. IEEE Transactions on Fuzzy Systems 16, 320–330 (2008)
Gu, S.M., Wu, W.Z., Chen, H.T.: A classification approach of granules based on variable precision rough sets. In: 6th IEEE International Conference on Cognitive Informatics, pp. 163–168. IEEE Computer Society, Los Alamitos (2007)
Gu, S.M., Zhu, S.X., Ye, Q.H.: An approach for constructing hierarchy of granules based on fuzzy concept lattices. In: 5th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 679–684. IEEE Computer Society, Los Alamitos (2008)
Hu, Q.H., Liu, J.F., Yu, D.R.: Mixed feature selection based on granulation and approximation. Knowledge-Based Systems 21, 294–304 (2008)
Inuiguchi, M., Hirano, S., Tsumoto, S.: Rough Set Theory and Granular Computing. Springer, Heidelberg (2002)
Komorowski, J., Pawlak, Z., Skowron, A.: Rough sets: tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization, A New Trend in Decision Making, pp. 3–98. Springer, Berlin (1999)
Leung, Y., Zhang, J.S., Xu, Z.B.: Clustering by scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1396–1410 (2000)
Lin, T.Y., Yao, Y.Y., Zadeh, L.A.: Data Mining, Rough Sets and Granular Computing. Physica-Verlag, Heidelberg (2002)
Ma, J.M., Zhang, W.X., Wu, W.Z., et al.: Granular computing based on a generalized approximation space. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 93–100. Springer, Heidelberg (2007)
Min, F., Liu, Q.H., Fang, C.L.: Rough sets approach to symbolic value partition. International Journal of Approximate Reasoning 49, 689–700 (2008)
Nawratil, G., Pottmann, H.: Subdivision schemes for the fair discretization of the spherical motion group. Journal of Computational and Applied Mathematics 222, 574–591 (2008)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)
Qian, Y.H., Liang, J.Y., Dang, C.Y.: Knowledge structure, knowledge granulation and knowledge distance in a knowledge base. International Journal of Approximate Reasoning 50, 174–188 (2009)
Qian, Y.H., Liang, J.Y., Yao, Y.Y., Dang, C.Y.: MGRS: A multi-granulation rough set. Information Sciences 180, 949–970 (2010)
Tsai, C.J., Lee, C.I., Yang, W.P.: A discretization algorithm based on Class-Attribute Contingency Coefficient. Information Sciences 178, 714–731 (2008)
Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with automatic balancing of time and space. Performance Evaluation 67, 816–836 (2010)
Wu, W.Z.: Rough set approximations based on granular labels. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS(LNAI), vol. 5908, pp. 93–100. Springer, Heidelberg (2009)
Wu, W.Z.: Attribute granules in formal contexts. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 395–402. Springer, Heidelberg (2007)
Wu, W.Z., Leung, Y.: Theory and applications of granular labelled partitions in multi-scale decision tables. Information Sciences 181, 3878–3897 (2011)
Yao, Y.Y.: Stratified rough sets and granular computing. In: Dave, R.N., Sudkamp, T. (eds.) 18th International Conference of the North American Fuzzy Information Processing Society, pp. 800–804. IEEE Press, New York (1999)
Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16, 87–104 (2001)
Yao, Y.Y.: A partition model of granular computing. In: Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)
Yao, Y.Y., Liau, C.J., Zhong, N.: Granular computing based on rough sets, quotient space theory, and belief functions. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 152–159. Springer, Heidelberg (2003)
Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., Ragade, R., Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)
Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gu, SM., Wu, WZ. (2011). Knowledge Acquisition in Inconsistent Multi-scale Decision Systems. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_84
Download citation
DOI: https://doi.org/10.1007/978-3-642-24425-4_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24424-7
Online ISBN: 978-3-642-24425-4
eBook Packages: Computer ScienceComputer Science (R0)