Skip to main content

Hierarchical Qualitative Inference Model with Substructures

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

  • 1898 Accesses

Abstract

Qualitative propagation influences in qualitative inferences are unlike and interrelated on the different hierarchy of knowledge granules, and quantitative information loss easily results in reasoning conflicts. This paper presents a hierarchical qualitative inference model with substructures which to some extent can eliminate the qualitative impact of uncertainty and solve trade-off problems by metastructures with basic decomposition and coarse-grained mesoscale substructures with edge-deletion. The substructural inferences could not only reduce computational complexity, but provide an approximate strategy for modular reasoning on large-scale problems. The example respectively illustrates the two substructural methods are both effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choi, A., Darwiche, A.: A Variational Approach for Approximating Bayesian networks by edge deletion. In: Proceedings of the 22nd Conf. UAI, pp. 80–89 (2006)

    Google Scholar 

  2. Druzdzel, M.J., Henrion, M.: Efficient Reasoning in Qualitative Probabilistic Networks. In: 11st National Conference on AAAI, pp. 548–553 (1993)

    Google Scholar 

  3. Feng, Q., Miao, D., Cheng, Y.: Hierarchical decision rules mining. Expert Systems with Applications 37(3), 2081–2091 (2010)

    Article  Google Scholar 

  4. Li, X., Liao, S.: Hierarchical Reasoning in QPNs based on Network Decomposition. In: IEEE International Conference on ICIP, pp. 97–100 (2010)

    Google Scholar 

  5. Liu, C.L., Wellman, M.P.: Incremental Trade-off Resolution in Qualitative Probabilistic Networks. In: Proc. of Conf. UAI, pp. 338–345 (1998)

    Google Scholar 

  6. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Palo Alto (1988)

    MATH  Google Scholar 

  7. Pedrycz, W.: Hierarchies of Architectures of Collaborative Computational Intelligence. International Journal of Software Science and Computational Intelligence, 18–31 (2009)

    Google Scholar 

  8. Renooij, S., van der Gaag, L.C., Parsons, S., Green, S.: Pivotal Pruning of Trade-offs in QPNs. In: Proc. of Conf. UAI, pp. 515–522 (2000)

    Google Scholar 

  9. Renooij, S., van der Gaag, L.C., Parsons, S.: Context-specific Sign-propagation in Qualitative Probabilistic Networks. Artificial Intelligence 144(1), 207–230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Renooij, S., van der Gaag, L.C.: Enhanced qualitative probabilistic networks for resolving trade-offs. Artificial Intelligence 172(12-13), 1470–1494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Renooij, S.: Bayesian network sensitivity to arc-removal. In: Proceedings of the Fifth European Workshop on Probabilistic Graphical Models, pp. 233–240 (2010)

    Google Scholar 

  12. Van Kouwen, F.A., Renooij, S., Schot, P.: Inference in Qualitative Probabilistic Networks revisited. International Journal of Approximate Reasoning 50(5), 708–720 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wellman, M.P.: Fundamental Concepts of Qualitative Probabilistic Networks. Artificial Intelligence 44, 257–303 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao, J.T.: A ten-year review of granular computing. In: Proc. of the IEEE International Conference on Granular Computing, San Jose, USA, pp. 734–739 (2007)

    Google Scholar 

  15. Yao, Y.Y.: Integrative Levels of Granularity. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modeling, pp. 31–47. Springer, Berlin (2009)

    Chapter  Google Scholar 

  16. Yue, K., Liu, W.: Qualitative probabilistic networks with rough-set-based weights. In: Proc. of ICMLC, vol. 3, pp. 1768–1774 (2008)

    Google Scholar 

  17. Yue, K., Liu, W., Yue, M.: Quantifying Influences in the Qualitative Probabilistic Network with Interval Probability Parameters. Applied Soft. Computing 11, 1135–1143 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Z., Miao, D., Qian, J. (2011). Hierarchical Qualitative Inference Model with Substructures. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics