Abstract
In this paper we present a framework for improving the ranking learning process, taking into account the implicit search behaviors of users. Our approach is query-centric. That is, it examines the search behaviors induced by queries and groups together queries with similar such behaviors, forming search behavior clusters. Then, it trains multiple ranking functions, each one corresponding to one of these clusters. The trained models are finally combined to re-rank the results of each new query, taking into account the similarity of the query with each cluster. The main idea is that similar search behaviors can be detected and exploited for result re-ranking by analysing results into feature vectors, and clustering them. The experimental evaluation shows that our method improves the ranking quality of a state of the art ranking model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference, pp. 133–142 (2002)
Qin, T., Liu, T.-Y., Xu, J., Li, H.: LETOR: A Benchmark Collection for Research on Learning to Rank for Information Retrieval. Information Retrieval Journal (2010)
Radlinski, F., Joachims, T.: Query chains: Learning to rank from implicit feedback. In: Proceedings of the Eleventh ACM SIGKDD International Conference, pp. 239–248 (2005)
Haveliwala, T.-H.: Topic-sensitive PageRank. In: Proceedings of the 11th International Conference on World Wide Web, pp. 517–526 (2002)
Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 271–279 (2003)
Rohini, U., Ambati, V.: Improving Re-ranking of Search Results Using Collaborative Filtering. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182, pp. 205–216. Springer, Heidelberg (2006)
Chirita, P.-A., Firan, C.-S., Nejdl, W.: Summarizing local context to personalize global web search. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 287–296 (2006)
Tan, B., Shen, X., Zhai, C.: Mining long-term search history to improve search accuracy. In: Proceedings of the 12th ACM SIGKDD International Conference, pp. 718–723 (2006)
Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile constructed without any effort from users. In: Proceedings of the 13th International Conference on World Wide Web, pp. 675–684 (2004)
Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference, pp. 43–50 (2005)
Qin, T., Zhang, X.-D., Wang, D.-S., Liu, T.-Y., Lai, W., Li, H.: Ranking with multiple hyperplanes. In: Proceedings of the 30th Annual International ACM SIGIR Conference, pp. 279–286 (2007)
Teevan, J., Dumais, S.-T., Liebling, D.-J.: To Personalize or Not to Personalize: Modeling Queries with Variation in User Intent. In: Proceedings of the 31st Annual International ACM SIGIR Conference, pp. 163–170 (2008)
Dou, Z., Song, R., Wen, J.-R., Yuan, X.: Evaluating the Effectiveness of Personalized Web Search. IEEE Transactions on Knowledge and Data Engineering 21, 1178–1190 (2008)
Zheng, Z., Chen, K., Sun, G., Zha, H.: A regression framework for learning ranking functions using relative relevance judgments. In: Proceedings of the 30th Annual International ACM SIGIR Conference, pp. 287–294 (2007)
Kim, J.-W., Candan, K.-S.: Skip-and-prune: cosine-based top-k query processing for efficient context-sensitive document retrieval. In: Proceedings of the 35th SIGMOD International Conference, pp. 115–126 (2009)
Chu, W., Keerthi, S.-S.: Support Vector Ordinal Regression. Neural Computation 19, 792–815 (2007)
Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., Hon, H.-W.: Adapting ranking svm to document retrieval. In: Proceedings of the 29th Annual International ACM SIGIR Conference, pp. 186–193 (2006)
Giannopoulos, G., Dalamagas, T., Sellis, T.: Collaborative Ranking Function Training for Web Search Personalization. In: Proceedings of the 3rd International Workshop PersDB 2009 (2009)
Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning 55(3), 311–331 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giannopoulos, G., Dalamagas, T., Sellis, T. (2011). Search Behavior-Driven Training for Result Re-Ranking. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds) Research and Advanced Technology for Digital Libraries. TPDL 2011. Lecture Notes in Computer Science, vol 6966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24469-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-24469-8_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24468-1
Online ISBN: 978-3-642-24469-8
eBook Packages: Computer ScienceComputer Science (R0)