Abstract
Many fast similarity search techniques relies on the use of pivots (specially selected points in the data set). Using these points, specific structures (indexes) are built speeding up the search when queering. Usually, pivot selection techniques are incremental, being the first one randomly chosen.
This article explores several techniques to choose the first pivot in a tree-based fast similarity search technique. We provide experimental results showing that an adequate choice of this pivot leads to significant reductions in distance computations and time complexity.
Moreover, most pivot tree-based indexes emphasizes in building balanced trees. We provide experimentally and theoretical support that very unbalanced trees can be a better choice than balanced ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bozkaya, T., Özsoyoglu, Z.M.: Indexing large metric spaces for similarity search queries. ACM Trans. Database Syst. 24(3), 361–404 (1999)
Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21st International Conference on Very Large Data Bases, pp. 574–584 (1995)
Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)
Gómez-Ballester, E., Micó, L., Oncina, J.: Some approaches to improve tree-based nearest neighbour search algorithms. Pattern Recognition 39(2), 171–179 (2006)
Faloutsos, C., Lin, K.: Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, SIGMOD 1995, pp. 163–174. ACM, New York (1995)
Freeman, H.: Boundary encoding and processing. Picture Processing and Psychopictorics, 241–266 (1970)
Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)
Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest point problem. IEEE Trans. Software Engineering 9, 631–634 (1983)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii Nauk 163(4), 845–848 (1965)
Merkwirth, C., Parlitz, U., Lauterborn, W.: Fast nearest-neighbor searching for nonlinear signal processing. Physical Review 62, 2089–2097 (2000)
Micó, L., Oncina, J., Carrasco, R.C.: A fast branch and bound nearest neighbor classifier in metric spaces. Pattern Recognition Letters 17, 731–773 (1996)
Navarro, G., Reyes, N.: Dynamic spatial approximation trees. J. Exp. Algorithmics 12, 1–68 (2008)
Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous bisector* trees – a tool for efficient partitioning of complex scenes of geometric objects. In: Monien, B., Ottmann, T. (eds.) Data Structures and Efficient Algorithms. LNCS, vol. 594, pp. 186–203. Springer, Heidelberg (1992)
Shapiro, M.: The choice of reference points in best-match file searching. Commun. ACM 20, 339–343 (1977)
Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 40(4), 175–179 (1991)
Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of the ACM 21(1), 168–173 (1974)
Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 311–321 (1993)
Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Serrano, A., Micó, L., Oncina, J. (2011). Impact of the Initialization in Tree-Based Fast Similarity Search Techniques. In: Pelillo, M., Hancock, E.R. (eds) Similarity-Based Pattern Recognition. SIMBAD 2011. Lecture Notes in Computer Science, vol 7005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24471-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-24471-1_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24470-4
Online ISBN: 978-3-642-24471-1
eBook Packages: Computer ScienceComputer Science (R0)