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Abstract. Graph-based representations have been used with consider-
able success in computer vision in the abstraction and recognition of
object shape and scene structure. Despite this, the methodology avail-
able for learning structural representations from sets of training exam-
ples is relatively limited. In this paper we take a simple yet effective
Bayesian approach to attributed graph learning. We present a naive
node-observation model, where we make the important assumption that
the observation of each node and each edge is independent of the others,
then we propose an EM-like approach to learn a mixture of these mod-
els and a Minimum Message Length criterion for components selection.
Moreover, in order to avoid the bias that could arise with a single esti-
mation of the node correspondences, we decide to estimate the sampling
probability over all the possible matches. Finally we show the utility of
the proposed approach on popular computer vision tasks such as 2D and
3D shape recognition.

1 Introduction

Graph-based representations have been used with considerable success in
computer vision in the abstraction and recognition of object shape and scene
structure, as they can concisely capture the relational arrangement of object
primitives, in a manner which can be invariant to changes in object viewpoint.
Despite their many advantages and attractive features, the methodology avail-
able for learning structural representations from sets of training examples is
relatively limited, and the process of capturing the modes of structural variation
for sets of graphs has proved to be elusive.

Recently, there has been considerable interest in learning structural represen-
tations from samples of training data, in particular in the context of Bayesian
networks, or general relational models [6]. The idea is to associate random vari-
ables with the nodes of the structure and to use a structural learning process
to infer the stochastic dependency between these variables. However, these ap-
proaches rely on the availability of correspondence information for the nodes of
the different structures used in learning. In many cases the identity of the nodes
and their correspondences across samples of training data are not known, rather,
the correspondences must be recovered from structure.

In the last few years, there has been some effort aimed at learning structural
archetypes and clustering data abstracted in terms of graphs. In this context
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spectral approaches have provided simple and effective procedures. For exam-
ple Luo and Hancock [8] use graph spectral features to embed graphs in a low
dimensional space where standard vectorial analysis can be applied. While em-
bedding approaches like this one preserve the structural information present,
they do not provide a means of characterizing the modes of structural varia-
tion encountered and are limited by the stability of the graph’s spectrum under
structural perturbation. Bonev et al. [3], and Bunke et al. [4] summarize the data
by creating super-graph representation from the available samples, while White
and Wilson [18] use a probabilistic model over the spectral decomposition of the
graphs to produce a generative model of their structure. While these techniques
provide a structural model of the samples, the way in which the supergraph is
learned or estimated is largely heuristic in nature and is not rooted in a sta-
tistical learning framework. Torsello and Hancock [14] define a superstructure
called tree-union that captures the relations and observation probabilities of all
nodes of all the trees in the training set. The structure is obtained by merg-
ing the corresponding nodes and is critically dependent on the order in which
trees are merged. Further, the model structure and model parameter are tightly
coupled, which forces the learning process to be approximated through a se-
ries of merges, and all the observed nodes must be explicitly represented in the
model, which then must specify in the same way proper structural variations and
random noise. The latter characteristic limits the generalization capabilities of
the model. Torsello [15] recently proposed a generalization for graphs which al-
lowed to decouple structure and model parameters and used a stochastic process
to marginalize the set of correspondences, however the approach does not deal
with attributes and all the observed nodes still need be explicitly represented
in the model. Further, the issue of model order selection was not addressed.
Torsello and Dowe [16] addressed the generalization capabilities of the approach
by adding to the generative model the ability to add nodes, thus not requiring
to model explicitly isotropic random noise, however correspondence estimation
in this approach was cumbersome and while it used a minimum message length
principle for selecting model-complexity, that could be only used to choose from
different learned structures since it had no way to change the complexity while
learning the model.

2 Generative Graph Model

Consider the set of undirected graphs S = (g1, ..., g;), our goal is to learn a gen-
erative graph model G that can be used to describe the distribution of structural
data and characterize the structural variations present the set. To develop this
probabilistic model, we make an important simplifying assumption: We assume
that the model is a mixture of naive models where observation of each node and
each edge is independent of the others, thus imposing a conditional independence
assumption similar to naive Bayes classifier, but allowing correlation to pop up
by mixing the models.

The naive graph model G is composed by a structural part, i.e., a graph
G = (V, E), and a stochastic part. The structural part encodes the structure, here
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V' are all the nodes that can be generated directly by the graph, and £ C V xV
is the set of possible edges. The stochastic part, on the other hand, encodes the
variability in the observed graph. To this end we have a series of binary random
variables 6; associated with each node and 7;; associated with each edge, which
give us respectively the probability that the corresponding node is generated
by the model, and the probability that the corresponding edge is generated,
conditioned on the generation of both endpoints. Further, to handle node- and
edge-attributes, we assume the existence of generative models W/ and W,
that model the observable node and edge attribute respectively, and that are
parametrized by the (possibly vectorial) quantities w}* and wg ;- Note that 0;
and W;" need not be independent, nor do 7;; and W¢,. With this formalism, the
generation of a graph from a naive model is as follows: First we sample from the
node binary indicator variables #; determining which nodes are observed, then
we sample the variables 7; ; indicating which edges between the observed nodes
are generated, and finally we sample the attributes W;* and W, for all observed
nodes and edges, thus obtaining the full attributed graph.

Clearly, this approach can generate only graphs with fewer or equal nodes than
V. This constraint limits the generalization capability of the model and forces
one to model explicitly even the observed random isotropic noise. To correct
this we add the ability to generate nodes and edges not explicitly modeled by
the core model. This is obtained by enhancing the stochastic model with an
external node observation model that samples a number of random external
nodes, i.e., nodes not explicitly modeled in the generative model. The number
of external nodes generated is assumed to follow a geometric distribution of
parameter 1 — @, while the probability of observing edges that have external
nodes as one of the endpoints is assumed to be the result of a Bernoulli trial
with a common observation probability 7. Further, we assume common attribute
models W and We for external nodes and edges, parametrized by the quantities
w™ and we. This way external nodes allow us to model random isotropic noise
in a compact way.

After the graph has been sampled from the generative model, we lose track
of the correspondences between the sample’s nodes and the nodes of the model
that generated them. We can model this by saying that an unknown random
permutation is applied to the nodes of the sample. For this reason, the obser-
vation probability of a sample graph depends on the unknown correspondences
between sample and model nodes.

Figure 1 shows a graph model and the graphs that can be generated from
it with the corresponding probabilities. Here model is unattributed with null
probability of generating external nodes. The numbers next to the nodes and
edges of the model represent the values of 0; and 7; ; respectively. Note that,
when the correspondence information (letters in the Figure) is dropped, we can-
not distinguish between the second and third graph anymore, yielding the final
distribution.

Given the node independence assumptions at the basis of the naive graph
model, if we knew the correspondences o, mapping the nodes of graph g to the
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Fig. 1. A structural model and the generated graphs. When the correspondence infor-
mation is lost, the second and third graph become indistinguishable.

nodes of the model G, we could very easily compute the probability of observing
graph g from model G:

P(glG,04) = (1 -0 HP *1(i)|9i>w H Pgag (i),04 |7'm> w; ;)
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where the indexes ¢ € V' and (i, j) € E indicate product over the internal nodes
and edges, while, with an abuse of the formalism, we write i ¢ V and (i,7) € E to
refer to external nodes and edges. With the ability to compute the probability
of generating any graph from the model, we can compute the complete data
likelihood and do maximum likelihood estimation of the model G, however, here
we are interested in the situation where the correspondences are not known and
must be inferred from the data as well.

Almost invariably, the approaches in the literature have used some graph
matching technique to estimate the correspondences and use them in learning
the model parameters. This is equivalent to defining the sampling probability
for node g as P(9|G) = max,ex, P(9|G,0). However, as shown in [15], assum-
ing the maximum likelihood estimation, or simply a single estimation, for the
correspondences yields a bias in the estimation as shown in Figure 2. Here, the
graph distribution obtained from the model in Figure 1 is used to infer a model,
however, since each node of the second sample graphs is always mapped to the
same model node, the resulting inferred model is different from the original one
and it does not generate the same sample distribution.

Fig. 2. Model estimation bias. If a single node correspondence is taken into account the
estimated model will exhibit a bias towards one of multiple possible correspondences.
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To solve this bias Torsello [15] proposed to marginalize the sampling probabil-
ity over all possible correspondences, which, once extended to deal with external
nodes, results in the probability

PEI9)= 3 Plg.0)Plo)= ;. 3 Plald.0). (1

oceXxm oclm

where ¢ is is the quotient of ¢ modulo permutation of its nodes, i.e., the repre-
sentation of g where the actual order of the nodes is ignored, X" is the set of
all possible partial correspondences between the m nodes of graph g and the n
nodes of model G, and Y, is the set of symmetries of g, i.e., the set of graph
isomorphisms from g onto itself.

Clearly, averaging over all possible correspondences is not possible due to
the super-exponential growth of the size of X7"; hence, we have to resort to an
estimation approach. In [15] was proposed an importance sampling approach
to compute a fast-converging estimate of P(g|G). Note that similar importance
sampling approaches marginalizing over the space of correspondences have been
used in [2] and [11]. In particular, in the latter work the authors show that the
estimation has expected polynomial behavior.

2.1 Correspondence Sampler

In order to estimate P(g|G), and to learn the graph model, we need to sample
correspondences with probability close to the posterior P(c|g,G). Here we gen-
eralize the approach in [15] for models with external nodes, also eliminating the
need to pad the observed graphs with dummy nodes to make them of the same
size of the graph model.

Assume that we know the node-correspondence matrix M = (m;p), which
gives us the marginal probability that model node ¢ corresponds to graph node
h. Note that, since model nodes can be deleted (not observed) and graph nodes
can come from the external node model, we have that Vh,) . m;, < 1 and
Vi, >, min < 1. We turn the inequalities into equalities by extending the matrix
M into a (n+ 1) x (m + 1) matrix M adding n + m slack variables, where the
first n elements of the last column are linked with the probabilities that a model
node is not observed, the first m elements of the last row are linked with the
probability that an observed node is external and element at index n+1,m +1
is unused. M is a partial doubly-stochastic matrix, i.e., its first n rows and its
first m columns add up to one.

With this marginal node-correspondence matrix to hand, we can sample a cor-
respondence as follows: First we can sample the correspondence for model node
1 picking a node h; with probability m; ;,. Then, we to condition the node-
correspondence matrix to the current match by taking into account the struc-
tural information between the sampled node and all the others. We do this by
multiplying m, r by P(gn, k|G1,j), i-e., the probability that the edges/non-edges
between k and h; map to the model edge (1, 7). The multiplied matrix is then
projected to a double-stochastic matrix M{l ! using a Sinkhorn projection [13]
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adapted to partial doubly-stochastic matrix, where the alternate row and column
normalization is performed only on the first n rows and m columns. We can then
sample a correspondence for model node 2 according to the distribution of the
second row of M ' and compute the conditional matching probability M, hl’h2

in much the same way we computed J\J1 !, and iterate until we have sampled
a complete set of correspondences, obtaining a fully deterministic conditional
matching probability M {1 ?.’.','T'L’h”, corresponding to a correspondence o, that has

been sampled with probability P(c) = (M), - (M) 4,-. . (Mh1 S N

,nl

2.2 Estimating the Model

With the correspondence samples to hand, we can easily perform a maximum
likelihood estimation of each model parameter by observing that, by construction
of the model, conditioned on the correspondences the node and edge observation
are independent to one another. Thus, we need only to maximize the node and
edge models independently, ignoring what is going on in the rest of the graph.
Thus, we define the sampled node and edge likelihood functions as

H Z ga(z |91;W )

geS o

Li;(5.9)=1]> P(go(i) a<a>|m,w”

geS o

from which we can easily obtain maximum likelihood estimates of the parameters
0i, wi', Tij, and wy ;.

Further, we can use th samples to update the initial node-correspondence
matrix in the following way

.7‘_[ U|g7
/_
>0 P(IS’(|§>Q) Xa: P(o)

where M, is the deterministic correspondence matrix associated with o. Thus in
our learning approach we start with a initial guess for the node-correspondence
matrix and improve on it as we go along. In all our experiments we initialize the
matrix based only on local node information, i.e. m;j is equal the probability
that model node ¢ generates the attributes of graph model h.

The only thing left to estimate is the value of |X,|, but that can be easily
obtained using our sampling approach observing that it is proportional to the
probability of sampling an isomorphism between g and a deterministic model
obtained from ¢ by setting the values of 7; ; to 1 or 0 according the existence of
edge (i,7) in g, and setting § = 0. It interesting to note that in this corner case,
our sampling approach turns out to be exactly the same sampling approach used
in [1] to show that the graph isomorphism problem can be solved in polynomial
time. Hence, our sampling approach is expected polynomial for deterministic
model. and we can arguably be confident that it will perform similarly well for
low entropy models.
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2.3 Model Selection

Given this sampling machinery to perform maximum likelihood estimation of
the model parameters for the naive models, we adopt a standard EM approach
to learn mixtures of naive models.

This, however, leaves us with a model selection problem, since model likelihood
decreases with the number of mixture components as well as with the size of
the naive models. To solve this problem we follow [16] in adopting a minimum
message length approach to model selection, but we deviate from it in that we
use the message length to prune an initially oversized model.

Thus we seek to minimize the combined cost of a two part message resulting
in the penalty function

L = g log (gj) + ; log(nD) — 1 — Zlog (P(9]G,0y)) (2)

geSs

where |S| is the number of samples and D the number of parameters for the
structural model.

The learning process is initiated with a graph model that has several mixture
components, each with more nodes that have been observed in any graph in the
training set. We iteratively perform the EM learning procedure on the oversized
model and, with the observation probabilities to hand, we decide whether to
prune a node from a mixture component or a whole mixture component and
after the model reduction we reiterate the EM parameter estimation and the
pruning until no model simplification reduces the message length.

The pruning strategy adopted is a greedy one, selecting the operation that
guarantees the largest reduction in message length given the current model pa-
rameters. Note that this greedy procedure does not guarantee optimality since
the estimate is clearly a lower bound, as the optimum after the pruning can be
in a very different point in the model-parameter space, but it does still give a
good initialization for leaving the reduced parameter set.

In order to compute the reduction in message length incurred by removing a
node, while sampling the correspondences we compute the matching probability
not only of the current model, but also of the models obtained from the current
one with any singe node removal. Note, however, that this does not increase the
time complexity of the sampling approach and incurs only in a small penalty.

3 Experimental Evaluation

In order to asses the performance of the proposed approach, we run several
experiments on graphs arising from different classification problems arising from
2D and 3D object recognition tasks, as well as one synthetic graph-classification
testbed. The generative model is compared against standard nearest neighbor
and nearest prototype classifiers based on the distances obtained using several
graph matching techniques at the state of the art. In all cases the prototype is
selected by taking the set-median of the training set. The performance of the
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generative model is assessed in terms of the classification performance for the
classification task to hand. For this reason, for all the experiments we plot the
precision and recall values:

tp tp
recall =
tp+ fp tp+ fn

where tp indicates the true positives, tn the true negatives and fn the false
negatives.

With the exception to the last set of experiments, all the graphs used have
a single numerical attribute associated to each node and no attributes linked
with the edges. The last set of experiments, on the other hand, is based on
edge-weighted graphs with no node attribute.

For the node-attributed graphs, we adopted the rectified Gaussian model used
in [14]. To this end, we define a single stochastic node observation model X; for
each node i. We assume X; is normally distributed with mean p; and standard
deviation o;. When sampling node ¢ from the graph model, a sample x; is drawn
from X;. If x; > 0 then the node is observed with weight w; = z;, otherwise
the node will not be present in the sampled graph. Hence the node observation
probability is §; = 1 —erfc(u;/o;) where erfc is the complementary error function

>~ 1 1
erfc = exp| — s?) ds.
/w Vor P ( 2 >

The edge observation model, on the other hand is a simple Bernoulli process.

precision =

3.1 Shock Graphs

We experimented on learning models for shock graphs, a skeletal based represen-
tation of shape. We extracted graphs from a database composed of 150 shapes
divided into 10 classes of 15 shapes each. Each graph had a node attribute that
reflected the size of the boundary feature generating the corresponding skeletal
segment. Our aim was to compare the classification results obtained learning
a generative model to what can be obtained using standard graph matching
techniques and a nearest neighbor classifier. Figure 3 shows the shape database,
the matrix of extracted edit distances between the shock graphs, and a mul-
tidimensional scaling representation of the distances; here numbers correspond
to classes. As we can see, recognition based on this representation is a hard
problem, as the class structure is not very clear in these distances and there is
considerable class overlap.

In Figure 4 we compare the classification performance obtained with the near-
est neighbor and nearest prototype rules with the one obtained by learning the
generative models and using Bayes decision rule for classification, i.e., assigning
each graph to the class of the model with largest probability of generating it.
Note that the graphs are never classified with a model that had the same graph
in the training set, thus in the case of the 15 training samples, the correct class
had only 14 samples, resulting in a leave-one-out scheme. Figure 4 shows a clear
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Fig. 3. Top row: Left, shape database; right, edit distance matrix. Bottom row: Mul-
tidimensional Scaling of the edit distances.
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Fig. 4. Precision and Recall on the shock graph dataset as the number of training
samples increases

improvement of about 15% on both precision and recall values regardless the
number of samples in the training set, thus proving that learning the modes of
structural variation present in a class rather than assuming an isotropic behavior
with distance, as has been done for 40 years in structural pattern recognition,
gives a clear advantage.

3.2 3D Shapes

The second test set is based on a 3D shape recognition task. We collected a num-
ber of shapes from the McGill 3D Shape Benchmark [12] and we extracted their
medial surfaces. The final dataset was obtained by transforming these skeletal
representations into an attributed graph. Figure 5 shows the shapes, their graph
distance matrix and a Multidimensional Scaling representaion of the distances.
The distances between the graphs were computed using the normalized metric
described in [17], which in turn relies on finding a maximal isomorphism be-
tween the graphs, for which we adopted the association graph-based approach
presented in [10]. Both the distance matrix and the Multidimensional Scaling
show that the classes are well separated, resulting in a relatively easy classifica-
tion task.

Once again we tested the generative model performance against the nearest
neighbor and the nearest prototype classifier. Figure 6 confirms our intuition
that this was indeed an easy task, since both the nearest neighbor and the near-
est prototype classifiers achieve the maximum performance. Yet, the generative
model performs extremely well, even when the training set contains just a very
few samples. As for the performance gap between the nearest neighbor and the
generative model, it is probably due to the very naive way of estimating the
initial node correspondences, and could be probably reduced using a more so-
phisticated initialization.

3.3 Synthetic Data

To further assess the effectiveness of the proposed approach we tested it on
synthetically generated data, where the data generation process is compatible
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Fig. 5. Top row: Left, shape database; right, distance matrix. Bottom row: Multidi-
mensional Scaling of the graph distances.

with the naive model adopted in the proposed learning approach. To this end,
we have randomly generated 6 different weighted graph prototypes, with size
ranging from 3 to 8 nodes. For each prototype we started with an empty graph
and then we iteratively added the required number of nodes each labeled with
a random mean and variance. Then we added the edges and their associated
observation probabilities up to a given edge density. Given the prototypes, we
sampled 15 observations from each class being careful to discard graphs that
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Fig. 6. Precision and Recall on the 3D shapes dataset

were disconnected. Then we proceeded as in the previous set of experiments
computing the dissimilarities between the graphs and learning the graph models.

Generating the data with the same model used for learning might seem to
give an unfair advantage to our generative model, but the goal of this set of
experiments is asses the ability of the learning procedure to obtain a good model
even in the presence of very large model-overlap. A positive result can also
provide evidence for the validity of the optimization heuristics.

Figure 7 shows the distance matrix of the synthetic data and the correspond-
ing Multidimensional Scaling representation. There is a considerable overlap
between different classes, which renders the task particularly challenging for the
nearest neighbor and nearest prototype classifiers. Yet, our generative model was
able to learn and describe this large intra class variability, thus coping with the
class overlap. Figure 8 plots the precision and recall curves for this set of exper-
iments. Even with a relatively small training set, our approach achieves nearly
90% precision and recall, and as the number of observed samples increases, it
yields perfect classification. On the other hand, the nearest neighbor classifier
is not able to increase its precision and recall above the 84% limit, while the
nearest prototype approach exhibits even lower performance.

3.4 Edge-Weighted Graphs

In the finals set of experiments, we applied the approach to an object recogni-
tion task. To this end we used a subset of the COIL-20 dataset [9]. For each
image we extracted the most salient points using a Matlab implementation of
the corner detector described in [7], the salient points where connected according
to a Delaunay triangulation, thus resulting in an edge-weighted graph, were the
edge-weights correspond to the distance between the salient points.

With this representation we used different node and edge observation models.
Since nodes are not attributed, we used simple Bernoulli models for them. For the
edges, on the other hand, we used a combined Bernoulli and Gaussian model:
a Bernoulli process establishes whether the edge is observed, and if it is the
weight is drawn according to an independent Gaussian variable. The reason for
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Fig. 8. Precision and Recall on the synthetic dataset

this different weight model resides in the fact that the correlation between the
weight and the observation probability that characterized the rectified Gaussian
model did not fit the characteristics of this representation.

To compute the distances for the nearest neighbor and nearest prototype
rule, we used the graph matching algorithm described in [5], which is capable of
dealing with edge-weighted graphs. Once the correspondences where computed,
we adopted the same metric as before. As Figure 9 shows, the generated dataset
is even more complex than the synthetic one. This is mainly due to the instability
of the corner detector, which provided several spurious nodes resulting in very
large intra-class structural variability.

Figure 10 shows that even on this difficult dataset, we significantly outperform
both the nearest neighbor and nearest prototype classifiers, emphasizing once
again the advantages of our structural learning approach.
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mensional Scaling of the graph distances.



Supervised Learning of Graph Structure 131
1 1
-+ -NN -+-NN
0.9 NP 0.9y ~« NP
-e-GM | -6-GM| |
08} ] 0.8
o - _ 0.7
g 07} e T o-
2 e T 0.6} [
3 06| - 8 .
o o --0---6-___" 0.51 °
05f - ¢ ] o--o 7%
, 0.4 /
04f g e e s T T ,Vrfﬁkz/éiiff:#r:#::_*:fﬂ:::Ij::%
¥ - ¢I,*: R e a ] 03F &
03t
02
2 4 6 8 10 2 4 6 8 10

Training Set Size Training Set Size

Fig. 10. Precision and Recall on the COIL-20 dataset

4 Conclusions

In this paper we have addressed to problem of learning a generative model for
graphs from samples. The model is based on a naive node independence assump-
tions, but mixes such simple models in order to capture node correlation. The
correspondences are estimated using a fast sampling approach, the node and
edge parameters are then learned using maximum likelihood estimates, while
model selection adopts a minimum descriptor length principle.

Experiments performed on a wide range of real world object recognition tasks
as well as on synthetic data show that learning the graph structure gives a
clear advantage over the isotropic behavior assumed by the vast majority of the
approaches in the structural pattern recognition literature. In particular, the
approach very clearly outperforms both the nearest neighbor and the nearest
prototype rules regardless of the matching algorithm and the distance metric
adopted.
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