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Abstract. With the expanding of the Semantic Web and the availability
of numerous ontologies which provide domain background knowledge and
semantic descriptors to the data, the amount of semantic data is rapidly
growing. The data mining community is faced with a paradigm shift:
instead of mining the abundance of empirical data supported by the
background knowledge, the new challenge is to mine the abundance of
knowledge encoded in domain ontologies, constrained by the heuristics
computed from the empirical data collection. We address this challenge
by an approach, named semantic data mining, where domain ontologies
define the hypothesis search space, and the data is used as means of
constraining and guiding the process of hypothesis search and evaluation.
The use of prototype semantic data mining systems SEGS and g-SEGS is
demonstrated in a simple semantic data mining scenario and in two real-
life functional genomics scenarios of mining biological ontologies with the
support of experimental microarray data.

Keywords. semantic data mining, ontologies, background knowledge,
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1 Introduction

The most common setting in knowledge discovery is rather simple: given is the
empirical data and a data mining task to be solved. The data is first preprocessed,
then a data mining algorithm is applied and the ending result is a predictive
model or a set of descriptive patterns which can be visualized and interpreted.
Data mining algorithms included in the contemporary data mining platforms
(e.g., WEKA [20]) provide extensive support for mining empirical data stored
in a single table format, usually referred to as propositional data mining.

Data by itself does not carry semantic meaning but needs to be interpreted
to convey information. Standard data mining algorithms do not ‘understand’ the
data: data are treated as meaningless numbers (or attribute values) and statistics



are calculated on them to build patterns and models, while the interpretation
of the results is left to human experts. An example of an everyday data mining
challenge is to use the reference to time when the data was collected. Unless
time is the main focus of investigation, as is the case in time series analysis, a
data mining algorithm will treat time just like any other attribute. However, as
standard data mining algorithms do not have specialized mechanisms to deal
with time, it is the role of the domain expert to adequately preprocess the time
entry.

It is well known that the performance of data mining methods can be signif-
icantly improved if additional relations among the data objects are taken into
account: the knowledge discovery process can significantly benefit from the do-
main (background) knowledge, as successfully exploited in relational data min-
ing and Inductive Logic Programming (ILP) [5]. Additional means of providing
more information to the learner is by providing semantic descriptors to the data.
Moreover, as discussed in this paper, important additional knowledge to seman-
tic descriptors are also the relations in the underlying ontologies which can be
used as an important additional information source for data mining.

Usually, there is abundant empirical data, while the background knowledge is
scarce. However, with the expanding of the Semantic Web and the availability of
numerous ontologies which provide domain background knowledge and seman-
tic descriptors to the data, the amount of semantic data (data which include
semantic information, e.g., ontologies and annotated data collections) is rapidly
growing. The data mining community is now faced with a paradigm shift: in-
stead of mining the abundance of empirical data supported by the background
knowledge, the new challenge is to mine the abundance of knowledge encoded in
domain ontologies, constrained by the heuristics computed from the empirical
data collection. This paper uses the term semantic data mining to denote this
new data mining challenge and approaches in which semantic data are mined.

We present g-SEGS, a prototype semantic data mining system implemented
in the novel service-oriented data mining environment Orange4dWS [16] which
supports knowledge discovery workflow construction from distributed data min-
ing services. System g-SEGS is a successor of SEGS, a system for Searching
of Enriched Gene Sets [19] designed specifically for functional genomics tasks.
While SEGS is a special purpose system for analyzing microarray data with
biological ontologies as background knowledge, g-SEGS is a general purpose se-
mantic data mining system. It takes as input (1) domain ontologies in the OWL
format, used to construct a version space of hypotheses (patterns) to be mined,
and (2) an empirical data collection, annotated by domain ontology terms, used
to constrain and guide the top-down search of hierarchically structured space of
hypotheses, as well as for hypotheses quality evaluation. The utility of systems
g-SEGS and SEGS is demonstrated in three scenarios: a simple hand-crafted
scenario, and two functional genomics use cases. In addition to OWL encoded
ontologies, used as input to our system g-SEGS, we also use other formats of an-
notated hierarchically structured data sources, such as the ENTREZ and KEGG
hierarchies used in the SEGS real-life functional genomics use case.



The paper is organized as follows. We provide the motivation for this research
in Section 2. Section 3 presents the related work. Sections 4 introduces the
semantic data mining task and presents the proposed semantic data mining
methodology, together with the g-SEGS algorithm implementation. Section 5
presents an illustrative example of using g-SEGS, followed by the presentation
of selected results of using SEGS in real-life functional genomics use cases in
Section 6. In Section 7, we conclude and give some directions for further work.

2 Motivation

Modern scientifc research is becoming more interdisciplinary, interactive, dis-
tributed, knowledge intensive, and data-driven. Semantic Web technologies, such
as RDF (Resource Description Framework) and OWL (Web Ontology Lan-
guage), are becoming popular as technological solutions to many of these chal-
lenges to science. The Semantic Web is changing the way how scientific data are
collected, deposited, and analysed. Semantic descriptors for data (informational
assets) are required to enable automated processing and support of knowledge
retrieval, sharing, reuse and discovery.

Ontologies provide logically consistent knowledge models which formally de-
fine the semantic descriptors. The RDF data model (triplets subject-predicate-
object) is simple, yet powerful. Such a representation ensures the flexibility of
changing the data structures, and the integration of heterogeneous data sources.
Data can be directly represented in RDF as graph data or (semi-)automatically
translated from propositional representations. Consequently, more and more
data from public relational data bases are now being translated into RDF as
linked data.! In this way, data items from various databases can be easily linked
and queried over multiple data repositories through the use of semantic descrip-
tors provided by the supporting ontologies—the domain models or background
knowledge.

While contemporary data mining platforms (e.g., WEKA) focus on propo-
sitional data, the performance of data mining methods can be significantly im-
proved by providing semantic descriptors to the data and if additional relations
among data objects are taken into account, e.g., if the underlying ontologies are
used as the main information source for mining.

Semantic data mining has a great potential utility in many applications
where ontologies are used as semantic descriptors for the data. For example,
in biomedicine, biology, sociology, finance, the number of available ontologies is
rapidly growing?. In order to support the users, semantic data mining algorithms
should be able to import an ontology (or a set of ontologies) in a standard ontol-
ogy language and output results of data mining in a form which is semantically
meaningful to the user. Our system g-SEGS is designed with this goal in mind.

! See the Linked Data site http://linkeddata.org/
% See http://bioportal.bioontology.org/



3 Related work

The idea of using hierarchies as background knowledge to generalize terms in
inductive rule learning has been proposed already by Michalski [13]. More recent
usage of ontologies in data mining includes [6, 2, 18, 3, 12] as well as domain
specific systems which use ontologies as background knowledge for data mining
[8, 19].

In [6], the use of taxonomies (where the leaves of the taxonomy correspond to
attributes of the input data) on paleontological data is studied. The problem was
to predict the age of a fossil site on the basis of the taxa that have been found in it
— the challenge was to consider taxa at a suitable level of aggregation. Motivated
by this application, they studied the problem of selecting an antichain from a
taxonomy that improves the prediction accuracy. In [2], background knowledge
is in the standard inheritance network notation and the KBRL? algorithm per-
forms a general-to-specific heuristic search for a set of conjunctive rules that
satisfy user-defined rule evaluation criteria. In [18], ontology-enhanced associa-
tion mining is discussed and four stages of the (4ft-Miner-based) KDD process
are identified that are likely to benefit from ontology application: data under-
standing, task design, result interpretation and result dissemination over the
semantic web. The work of [3] first focuses on pre-processing steps of business
and data understanding in order to build an ontology driven information system
(ODIS), and then the knowledge base is used for the post-processing step of
model interpretation. Liu et al. [12] propose a learning-based semantic search
algorithm to suggest appropriate Semantic Web terms and ontologies for the
given data.

An ontology driven approach to knowledge discovery in biomedicine is de-
scribed in [8], where efforts to bridge knowledge discovery in biomedicine and
ontology learning for successful data mining in large databases are presented. A
domain specific system that uses ontologies and other hierarchies as background
knowledge for data mining is SEGS [19]. The SEGS system finds groups of dif-
ferentially expressed genes, called enriched gene sets*. Compared to earlier work
[17, 9], the novelty of SEGS is that it does not only test existing gene sets (ex-
isting ontology terms) for differential expression but it generates also new gene
set descriptions that represent novel biological hypotheses.

There has been a large amount of work developing machine learning and
data mining methods for graph-based data [1]. However, these methods are not
designed to fully exploit the rich logical descriptions of relations provided by the
ontologies that support the description of graph-based data. Relational data min-
ing, inductive logic programming (ILP) and statistical relational learning (SRL)
methods [5] are more general but they assume the data will be described using
Horn clauses or Datalog, rather than RDF and description logics. The most com-
monly used description logic format for Semantic Web is OWL-DL. OWL-DL

3 KBRL is based on the RL learning program of [4]
4 A gene set is enriched if the genes that are members of this gene set are statistically
significantly differentially expressed compared to the rest of the genes.
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allows to define properties of relations which link entities defined in an ontology
as transitive, symmetric, functional, and to assign cardinality to relations. Prop-
erties of relations form an important part of the background knowledge model,
therefore modifications of existing relational algorithms or even new algorithms
are required in order to effectively exploit this knowledge. Lehmann and Haase
[11] make the first steps in this direction by defining a refinement operator in the
EL Description Logic; opposed to our work they consider only the construction
of consistent and complete hypotheses using an ideal refinement operator.

4 Semantic Data Mining with g-SEGS

This paper uses the term semantic data mining to denote a data mining task in
which semantic data are mined. This section first introduces this task, followed
by the methodology of semantic data mining as implemented in g-SEGS.

4.1 Semantic data mining
A semantic data mining task, illustrated in Figure 1, is defined as follows.

Given: a set of domain ontologies, and empirical data annotated by domain
ontology terms®,

Find: a hypothesis (a predictive model or a set of descriptive patterns) by min-
ing the abundance of information in ontologies, constrained by the informa-

tion in the empirical data collection.

Successfully handling the challenging task of semantic data mining may result
in a paradigm shift in which the abundance of domain ontologies will be mined,
and the empirical training data will be used mainly to constrain the hypothesis
search space by the heuristics computed from the training data collection®.

The methodology, implemented in the g-SEGS system, assumes that the
hypothesis language are logical rules, where rule conditions are conjunctions of

5 Annotations refer to annotations of instances and of attribute values.

5 A similar challenge is faced in pattern mining research where the original problem
of mining the abundance of data was recently transformed into a problem of mining
the abundance of induced patterns, constrained by the heuristics computed from the
training data.



ontology terms. While statistical significance of rules could be measured on the
fly in the process of rule construction, we have decided to construct all the rules
satisfying the support constraint, and to eliminate insignificant rules in rule
postprocessing, using a heuristic known from subgroup discovery. As shown in
Section 5, semantic data mining results in more general and semantically more
meaningful rules, if compared to standard rule learning.

Motivated by the successful applications of SEGS [19, 14], we have decided
to generalize SEGS to become domain independent, and developed a new system
named g-SEGS (generalized SEGS). From the four main components of SEGS,
only the SEGS hypothesis language and the generation and pruning procedure
are used unchanged in the new semantic data mining system g-SEGS.

The proposed semantic data mining methodology, implemented in g-SEGS, is
described below in terms of its four main components: the hypothesis language,
the input (domain ontologies and training data), the hypothesis generation pro-
cedure and the hypothesis (pattern) evaluation and filtering procedure.

4.2 Hypothesis language

The hypothesis language are descriptive patterns in the form of rules Class +
Conditions, where Conditions is a logical conjunction of ontology terms. For
example, a rule whose antecedent is a conjunction of three terms, has the form
Class + X NY AN Z, where X stands for all x € X, Y stands for all y € Y, and
Z stands for all z € Z, and where e.g., X € Ontl,Y € Ont2, and Z € Ont3.

4.3 Input

g-SEGS requires two types of inputs: the ontological background knowledge and
the training data.

Background knowledge consists of domain ontologies, typically in the OWL
format.” Ontologies are used to construct the hypothesis search space.
Training data are class-labeled vectors of attribute values, annotated by the
terms in domain ontologies. The data are used to constrain the hypothesis

search, and for rule quality evaluation in rule postprocessing.

4.4 Rule construction

Rule construction results in a set of rules satisfying the minimal support crite-
rion. As a rule antecedent is a conjunction of ontology terms, all possible con-
junctions of ontology terms can be generated and evaluated for small ontologies.
In case of large ontologies, however, the search space needs to be pruned. To do
so, we use the subsumption property of a relation which forms the hierarchical

" In addition to OWL ontologies, we allow for other formats of annotated hierarchically
structured data sources, such as the ENTREZ and KEGG hierarchies, which were
used in one of the two real-life functional genomics use cases in Section 6.



backbone of the ontology (e.g. is-a). Suppose that rule C + X' AY' AN Z'
has been constructed by the specialization of rule C <~ X A Y A Z, where
X' 2 X,)Y' <Y,Z' X Z (< denotes more or equally specific relation). If rule C
+— X' ANY' AN Z' covers m objects where m < N (m is lower than the support
threshold NV which determines the minimal number of objects to be covered by
each rule), it is pruned and none of its specialization will be constructed. This
results in a significant reduction of the hypothesis search space.

In a simplified case, where three ontologies Ontl, Ont2 and Ont3 are given,
hypothesis generation consists of creating the conjunctions of individual ontol-
ogy terms, one from each ontology. Hypothesis construction is performed in a
top-down manner, starting from the most general terms in each of the three
ontologies, and specializing the rule antecedent as long as the stopping criterion
is satisfied (ensuring sufficient coverage of data instances)®. If one conjunct does
not satisfy the constraint, then its descendents will also not satisfy it, because
they cover a subset of instances covered by the conjunction. Therefore, we first
construct conjuncts from the top nodes of Ontl, Ont2 and Ont3, and if the
conjunction fails to satisfy the given constraint, g-SEGS will not refine the last
added term. Note that the efficiency of the algorithm comes from the usage of
the hierarchical structure of ontologies.

In addition to is-a or instance-of subsumption relations there may be
other links (relations) among ontology terms, e.g, the interacts relation. Con-
sider a simple rule class(A) + is-a(A,B), and suppose that ontology term B is
linked with term C through interacts(B,C). In this case, the rule’s antecedent
can be refined to form a conjunction is-a(A,B) A interacts(B,C). This illus-
trates a situation which is common to ILP, as one can also make statements
about B or C, not only about term A which appears in the rule head class(4).
For this reason, as well as due to applying heuristic rule filtering (see the next
section), a simple top-down refinement approach to rule construction (e.g. as
proposed by Lehmann and Haase [11]) is insufficient.

4.5 Rule filtering and evaluation

As the number of generated rules can be large, uninteresting and overlapping
rules have to be filtered. Rule filtering in g-SEGS is done with w WRAcc (Weighted
Relative Accuray heuristic with example weigths) heuristic [10], using example
weights as means for considering different parts of the example space when se-
lecting the best rules. In the wWRAcc heuristic defined below, N’ denotes the
sum of weights of all examples, n’'(C) is the sum of weigths of examples of con-
cept C, n/(Cnd) is the sum of weights of all covered examples, and n'(Cnd A C)
is the sum of weights of all correctly covered examples of concept C.

n'(Cnd) (n’(Cnd AC) n’(C))

N’ -

wWRAcc(C + Cnd) = 7 (Cnd) N

8 If the ontology is simply a hierarchy (a tree), with the root of the graph being the
most general term, this means that substantial pruning of the search space can be
achieved in rule construction.



Rule filtering, using the weighted covering approach, proceeds as follows. It
starts with a set of generated rules, a set of examples with weights equal to 1
and parameter k, which denotes how many times an example can be covered
before being removed form the example set. In each iteration, we select the rule
with the highest wWRAcc value, add it to the final rule set, and remove it from
the set of generated rules. Then counter m is increased to m + 1 and weigths
of examples covered by this rule decreased to ﬁ“, where example weight %
means that the example has already been covered by m < k rules. These steps
are repeated until the algorithm runs out of examples or rules or if no rule has
a score above 0. Once the learning process is finished and the rules have been
generated and filtered, they are evaluated and sorted using the Fisher’s exact
test or the original WRAcc (Weighted Relative Accuray) measure known from
CN2-SD subgroup discovery, which trades-off the generality of a rule and its
precision. The WRAcc heuristic is defined as

n(Cnd) <n(C’nd AC) n(0)>

WRAcc(C < Cnd) = i n(Cnd) N

where N is the number of all examples, n(C) is the number of examples of
concept C, n(Cnd) is the number of all covered examples, and n(Cnd A C) is
the number of all correctly covered examples of concept C'.

4.6 g-SEGS implementation

The g-SEGS system takes as input the ontologies in the OWL format and data
in the Orange [15] format, uses the hierarchical structure of the is-a relation of
ontologies for efficient search and pruning of the rule search space, generates rules
by forming conjunctions of terms from different ontologies, and uses the wWRAcc
(Weighted Relative Accuray heuristic with example weigths) for rule pruning
by iteratively selecting the rules and Fischer exact test or WRAcc (Weighted
Relative Accuray) to sort/rank the selected rules.

g-SEGS is implemented in the Orange4dWS [16] environment which upgrades
the freely available Orange [15] data mining environment with several additional
features: simple creation of new visual programming units (widgets) from dis-
tributed web services, composition of workflows from both local and distributed
data processing/mining algorithms and data sources, and implementation of a
toolkit for creating new web services. By using these tools, we were able to give
g-SEGS a user-friendly interface and the ability to be executed remotely as a
web service. By mapping the g-SEGS input to the SEGS input we were able to
fully reuse the already implemented SEGS system. We defined the g-SEGS web
service using WSDL (Web Service Definition Language). Using the web service
definition and the set of tools provided by Orange4dWS, we created a web service
for our system. Finally, also using Orange4dWS, we imported the web service into
the Orange visual programming environment, thus allowing g-SEGS to be used
in various workflows together with other Orange widgets.

A screenshot of an OrangedWS workflow with g-SEGS is shown in Figure 2.
The workflow is composed of one widget for loading the dataset (File), three
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Fig. 2. An OrangedWS workflow with g-SEGS.

widgets for loading the three ontologies (Read Ontology), and one widget for
specifying top-level ontology terms that are too general to appear in the final
rules (General terms). These five widgets act as the input to the g-SEGS wid-
get, which generates rules, displayed in the g-SEGS Rule set browser widget.

5 An illustrative example

As a proof-of-concept semantic data mining example, consider a bank which
has the following data about its customers: place of living, employment, bank
services used, which includes the account type, possible credits and insurance
policies and so on. The bank also categorized the clients as ‘big spenders’ or not
and wants to find patterns describing big spenders. Table 1 presents the training
data.

The application of standard classification rule learning algorithm CN2 (we
chose the Orange [15] implementation of CN2) to these data generates the rules
presented in the top part of Table 2, and the middle part of this table presents
the results obtained by using the CN2-SD subgroup discovery algorithm [10].

While CN2 generates a set of dependent and very specific classification rules,
CN2-SD produces rules representing individual subgroup descriptions which are
better suited for the comparison with the results obtained with g-SEGS. Note
that both sets of rules are rather specific, due to the specificity of the attribute-
value data representation. Standard data mining does not provide automated
means for rule generalization; if more general rules were desired, the data should
have been manually preprocessed and attribute-values generalized to obtain more
general rules and therefore more valuable results.

In semantic data mining using g-SEGS, in addition to the data in Table 1,
three ontologies shown in Figure 3 are used as input to introduce semantics into
the discovery process. The result of applying g-SEGS to these ontologies and the
given training data is presented in the bottom part of Table 2.°

The result illustrates the following characteristics of semantic data mining
by g-SEGS: (a) Conditions of g-SEGS rules are conjunctions of literals, hav-
ing ontology terms as arguments of predicates bearing the ontology name (and
therefore logically defined semantic meaning), while the conditions of CN2 and

9 The same data and background knowledge could also be used for describing credit
holders or clients that have closed their account in a bank.



Table 1. Table of bank customers described by different attributes and class ‘big
spender’.

id occupation location account loan deposit inv_fund insur. big_spender

1 Doctor Milan Classic No No TechShare Family YES
2 Doctor Krakow  Gold Car  ShortTerm No No YES
3 Military Munich  Gold No No No Regular YES
4 Doctor Catanzaro Classic Car  LongTerm TechShare Senior YES
5 Energy Poznan  Gold Apart. LongTerm No No YES
25 Transport  Cosenza Classic Car  ShortTerm No Family NO
26 Police Tarnow  Gold Apart. No No No NO
27 Nurse Radom  Classic No No No Senior NO
28 Education Catanzaro Classic Apart. No No No NO
29 Transport Warsaw  Gold Car  ShortTerm TechShare Regular NO
30 Police Cosenza Classic Car No No No NO

CN2-SD rules are conjunctions of attribute-value pairs, (b) g-SEGS rules are
more general compared to rules constructed by CN2, CN2-SD or other non-
semantic data mining algorithms, and (c¢) once the ontologies and the workflows

Table 2. Rules generated by CN2, CN2-SD and g-SEGS from the data in Table 1.
Coverage, confidence and WRAcc were computed in postprocessing.

CN2 rules for class big_spender="YES’ Coverage Confid. WRAcc
occupation="Doctor’ 20.00% 83.33% 0.067
loan="No’ A account="Gold’ 10.00% 100.00% 0.050
occupation="Health-care’ 6.67% 100.00% 0.033
occupation="Education’ A account="Gold’ 6.67% 100.00% 0.033
CN2-SD rules for class big_spender="YES’ Coverage Confid. WRAcc
account="Gold’ A investment_fund="No’ 33.33% 80.00% 0.100
account="Gold’ 46.67% 64.29% 0.067
occupation="Doctor’ 20.00% 83.33% 0.067
occupation="Health-care’ 6.67% 100.00% 0.033

investment_fund="TechnologyShare’ A account='Classic’ 13.33% 75.00% 0.033

g-SEGS rules for class big_spender="YES’ Coverage Confid. WRAcc
occupation(Public) A bankingService(Gold) 26.67% 87.50% 0.100
bankingService(Gold) 46.67% 64.29% 0.067
occupation(Doctor) 20.00% 83.33% 0.067
occupation(Public) A bankingService(Deposit) 26.67% 75.00% 0.067
occupation(Health) 23.33% 71.43% 0.050
occupation(Doctor) A bankingService(Deposit) 16.67% 80.00% 0.050
location(Bavaria) 16.67% 80.00% 0.050
location(Germany) A occupation(Service) 16.67% 80.00% 0.050

A bankingService(investmentFund)
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Fig. 3. Ontologies for data in Table 1. Note that these are not the full ontologies, but
only the parts needed to interpret the rules presented in this paper. Concepts with
omitted subconcepts are drawn with a dashed line.

have been constructed, automated and therefore repeatable data processing and
rule construction can be performed, less prone to human processing errors.

6 Functional genomics use cases

This section presents how SEGS was used in two functional genomics use cases,
illustrating (1) microarray data analysis by using the Gene Ontology (GO) as
background knowledge, and (2) microarray data analysis using three semantic
knowledge sources, i.e., GO, KEGG and Entrez, as background knowledge to
SEGS.

We first present the results of analzying microarray data with the SEGS
algorithm, using the Gene Ontology as background knowledge. The results were
obtained in the data analysis task, aimed at distinguishing between samples of
acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), first
introduced by Golub et al. [7]. The data contains 73 class-labeled samples of
expression vectors, where gene expression profiles (obtained by the Affymetrix
HU6800 microarray chip) contain probes for 6,817 genes.

Using GO as background knowledge, our system has generated several gene
group describing rules. For space constraints we list a single rule, describing a



group of 18 genes, characterizing the ALL leukemia class.

genegroup(all,G) +
component (G,nucleus) A {interaction(G,G1) A
process(Gl,regulation-of-transcription).

The interpretation of this rule is that acute lymphoblastic leukemia (ALL)
is characterized by proteins (gene group G), which are the products of the genes
which are located in the nucleus of the cell, and which interact with the genes
(gene group G1) which are included in the process of regulation of transcrip-
tion. Unlike other well known tools that use gene ontologies for analyzing gene
expression data PAGE [9] and GSEA [17], which report statistically significant
single GO terms and do not use gene interaction data, we are able to find a set
of genes described by a conjunction of ontology terms as well as the available
gene interaction data to describe features of genes which can not be represented
by other approaches.

The second use case in functional genomics presents the results obtained
with the SEGS algorithm when analzying microarray data from a different ALL
dataset, i.e., a dataset from a clinical trial in acute lymphoblastic leukemia (ALL)
(Chiaretti et al., 2004). The ALL dataset was again chosen as it is typical for
medical research and has a reference role for such evaluations as it has been a
model dataset for other microarray data analysis tools as well. The analysis of
differences in gene expression between two lymphocyte subtypes (lymphocyte B
and lymphocite T) was performed as follows. Genes were first ranked according
to their expression value, and differentially expressed genes were selected by gene
filtering according to logF'C' cut-off value |0.3].

Three semantic knowledge sources were used as background knowledge to
SEGS: GO, KEGG and Entrez. As, except for GO, these hierarchies are not
available in the OWL format, a dedicated algorithm for merging these three
sources was used to form the joint input database format, which can be cho-
sen as a parameter in g-SEGS, in addition to the default OWL format. Space
constrains disable us from presenting the set of discovered rules, describing sub-
groups of differentially expressed genes, formed as conjuctions of terms, e.g.,
receptor-binding(G) A T-cell-activation(G) as well as basic information
about the rules. Similar to previous research, the results show that one of the
main differences between differentially expressed and non-differentially expressed
gene groups is the expression of major histocompatibility complex (HLA) related
genes.

7 Conclusions

This paper discusses semantic data mining as an adequate approach to face a
potential paradigm shift in data mining, addressing the new challenge of min-
ing the knowledge in ontologies, constrained by the empirical evidence in the
collected data. In our approach, domain ontologies define the hypothesis search



space, and the data is used as means of guiding and constraining the hypothesis
search and evaluation.

A prototype semantic data mining system g-SEGS is used to illustrate the
approach in a simple semantic data mining scenario, whereas its predecessor
SEGS is used to illustrate semantic data mining in two real-life functional ge-
nomics scenarios. The g-SEGS system takes ontologies in OWL format and data
in a standard attribute-value format as its input, and takes advantage of the
hierarchical relationships in ontologies for efficient search and pruning of the
hypothesis search sapce. The user friendlly user interface is also one of the key
features of the g-SEGS system.

There are many possible fields of application of semantic data mining. It
can be directly applied to domains where data are characterized by sparsity
and taxonomies are available, like market basket analysis, to give an example.
We have demonstrated the usefulness of semantic data mining in two real-life
functional genomics scenarios where biological ontologies are mined with the
support of experimental microarray data. The prototype semantic data mining
system g-SEGS shows major advantages compared to non-semantic systems, as
more general rules and automated data preprocessing are performed. There are
also advantages compared to ILP and other related approaches since our system
uses a standardized encoding of knowledge.

A systematic comparison of g-SEGS to the state of the art relational data
mining systems is planned in our further work. The first results of comparing
g-SEGS to the state of the art ILP system Aleph indicate that g-SEGS is sig-
nificantly more efficient, and that using the ontologies in their native format
substantially simplifies the system’s use in real life scenarios, by reducing the
encoding time and ensuring the system’s reusability.
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