Abstract
In this paper, we review the framework of learning (from) label preferences, a particular instance of preference learning. Following an introduction to the learning setting, we particularly focus on our own work, which addresses this problem via the learning by pairwise comparison paradigm. From a machine learning point of view, learning by pairwise comparison is especially appealing as it decomposes a possibly complex prediction problem into a certain number of learning problems of the simplest type, namely binary classification. We also discuss how a number of common machine learning tasks, such as multi-label classification, hierarchical classification or ordinal classification, may be addressed within the framework of learning from label preferences. We also briefly address theoretical questions as well as algorithmic and complexity issues.
Large parts of this paper are based on [18] and [19].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aiolli, F., Sperduti, A.: A preference optimization based unifying framework for supervised learning problems. In: [17], pp. 19–42
Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2000)
Angulo, C., Ruiz, F.J., González, L., Ortega, J.A.: Multi-classification by using tri-class SVM. Neural Processing Letters 23(1), 89–101 (2006)
Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., Kämper, J.: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21(7), 1069–1077 (2005)
Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191 (2004)
Bradley, R.A., Terry, M.E.: The rank analysis of incomplete block designs — I. The method of paired comparisons. Biometrika 39, 324–345 (1952)
Brazdil, P.B., Soares, C., da Costa, J.P.: Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning 50(3), 251–277 (2003)
Cheng, W., Fürnkranz, J., Hüllermeier, E., Park, S.-H.: Preference-based policy iteration: Leveraging preference learning for reinforcement learning. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2011). Springer, Heidelberg (2011)
Cheng, W., Rademaker, M., De Beats, B., Hüllermeier, E.: Predicting partial orders: Ranking with abstention. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2010), Barcelona, Spain (2010)
Dekel, O., Manning, C.D., Singer, Y.: Log-linear models for label ranking. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems (NIPS 2003), pp. 497–504. MIT Press, Cambridge (2003)
Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)
Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001)
Friedman, J.H.: Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford University, Stanford, CA (1996)
Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research 2, 721–747 (2002)
Fürnkranz, J.: Round robin ensembles. Intelligent Data Analysis 7(5), 385–404 (2003)
Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg (2003)
Fürnkranz, J., Hüllermeier, E. (eds.): Preference Learning. Springer, Heidelberg (2010)
Fürnkranz, J., Hüllermeier, E.: Preference learning: An introduction. In: [17], pp. 1–17
Fürnkranz, J., Hüllermeier, E.: Preference learning and ranking by pairwise comparison. In: [17], pp. 65–82
Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 73(2), 133–153 (2008)
Fürnkranz, J., Hüllermeier, E.: Stijn Vanderlooy. Binary decomposition methods for multipartite ranking. In: Buntine, W.L., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2009), Bled, Slovenia, vol. Part I, pp. 359–374. Springer, Heidelberg (2009)
Fürnkranz, J., Sima, J.F.: On exploiting hierarchical label structure with pairwise classifiers. SIGKDD Explorations 12(2), 21–25 (2010); Special Issue on Mining Unexpected Results
Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: A new approach to multiclass classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10 (NIPS 1997), pp. 507–513. MIT Press, Cambridge (1998)
Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)
Hühn, J., Hüllermeier, E.: FR3: A fuzzy rule learner for inducing reliable classifiers. IEEE Transactions on Fuzzy Systems (2008) (to appear)
Hühn, J., Hüllermeier, E.: Is an ordinal class structure useful in classifier learning? International Journal of Data Mining, Modelling, and Management 1(1), 45–67 (2008)
Hüllermeier, E., Brinker, K.: Learning valued preference structures for solving classification problems. Fuzzy Sets and Systems 159(18), 2337–2352 (2008)
Hüllermeier, E., Fürnkranz, J.: Comparison of ranking procedures in pairwise preference learning. In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), Perugia, Italy (2004)
Hüllermeier, E., Fürnkranz, J.: On predictive accuracy and risk minimization in pairwise label ranking. Journal of Computer and System Sciences 76(1), 49–62 (2010)
Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artificial Intelligence 172, 1897–1916 (2008)
Hüllermeier, E., Vanderlooy, S.: Combining predictions in pairwise classification: An optimal adaptive voting strategy and its relation to weighted voting. Pattern Recognition (2009) (to appear)
Kamishima, T., Kazawa, H., Akaho, S.: A survey and empirical comparison of object ranking methods. In: [17], pp. 181–201
Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: A stepwise procedure for building and training a neural network. In: Fogelman Soulié, F., Hérault, J. (eds.) Neurocomputing: Algorithms, Architectures and Applications. NATO ASI Series, vol. F68, pp. 41–50. Springer, Heidelberg (1990)
Knerr, S., Personnaz, L., Dreyfus, G.: Handwritten digit recognition by neural networks with single-layer training. IEEE Transactions on Neural Networks 3(6), 962–968 (1992)
Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: Proceedings of the 14th International Conference on Machine Learning (ICML 1997), Nashville, pp. 170–178 (1997)
Kreßel, U.H.-G.: Pairwise classification and support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, ch. 15, pp. 255–268. MIT Press, Cambridge (1999)
Loza Mencía, E., Fürnkranz, J.: Efficient pairwise multilabel classification for large-scale problems in the legal domain. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 50–65. Springer, Heidelberg (2008)
Loza Mencía, E., Park, S.-H., Fürnkranz, J.: Efficient voting prediction for pairwise multilabel classification. In: Proceedings of the 17th European Symposium on Artificial Neural Networks (ESANN 2009), Bruges, Belgium, pp. 117–122. d-side publications (April 2009)
Lu, B.-L., Ito, M.: Task decomposition and module combination based on class relations: A modular neural network for pattern classification. IEEE Transactions on Neural Networks 10(5), 1244–1256 (1999)
Moreira, M., Mayoraz, E.: Improved pairwise coupling classification with correcting classifiers. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 160–171. Springer, Heidelberg (1998)
Park, S.-H., Fürnkranz, J.: Efficient pairwise classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 658–665. Springer, Heidelberg (2007)
Park, S.-H., Fürnkranz, J.: Efficient prediction algorithms for binary decomposition techniques. Data Mining and Knowledge Discovery (to appear, 2011)
Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Solla, S.A., Leen, T.K., Müller, K.-R. (eds.) Advances in Neural Information Processing Systems 12 (NIPS 1999), pp. 547–553. MIT Press, Cambridge (2000)
Price, D., Knerr, S., Personnaz, L., Dreyfus, G.: Pairwise neural network classifiers with probabilistic outputs. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems 7 (NIPS 1994), pp. 1109–1116. MIT Press, Cambridge (1995)
Schmidt, M.S., Gish, H.: Speaker identification via support vector classifiers. In: Proceedings of the 21st IEEE International Conference Conference on Acoustics, Speech, and Signal Processing (ICASSP 1996), Atlanta, GA, pp. 105–108 (1996)
Sulzmann, J.-N., Fürnkranz, J., Hüllermeier, E.: On pairwise naive bayes classifiers. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 371–381. Springer, Heidelberg (2007)
Vembu, S., Gärtner, T.: Label ranking algorithms: A survey. In: [17], pp. 45–64
Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5, 975–1005 (2004)
Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1, 69–90 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hüllermeier, E., Fürnkranz, J. (2011). Learning from Label Preferences. In: Elomaa, T., Hollmén, J., Mannila, H. (eds) Discovery Science. DS 2011. Lecture Notes in Computer Science(), vol 6926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24477-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-24477-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24476-6
Online ISBN: 978-3-642-24477-3
eBook Packages: Computer ScienceComputer Science (R0)