Abstract
In this work, we address several tasks of structured prediction and propose a new method for handling such tasks. Structured prediction is becoming important as data mining is dealing with increasingly complex data (images, videos, sound, graphs, text,...). Our method, k-NN for structured prediction (kNN-SP), is an extension of the well known k-nearest neighbours method and can handle three different structured prediction problems: multi-target prediction, hierarchical multi-label classification, and prediction of short time-series. We evaluate the performance of kNN-SP on several datasets for each task and compare it to the performance of other structured prediction methods (predictive clustering trees and rules). We show that, despite it’s simplicity, the kNN-SP method performs satisfactory on all tested problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bakir, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.: Predicting Structured Data. The MIT Press, Cambridge (2007)
Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proc. 15th International Conference on Machine Learning, pp. 55–63. Morgan Kaufmann, San Francisco (1998)
Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. Journal of Machine Learning Research 3, 621–650 (2002)
Bratko, I.: Prolog Programming for Artificial Intelligence, 3rd edn. Addison Wesley, Reading (2000)
Dasarathy, B.V. (ed.): Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society, Los Alamitos (1990)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)
Kocev, D.: Ensembles for Predicting Structured Outputs. PhD Thesis, Jozef Stefan International Postgraduate School, Ljubljana, Slovenia (2011)
Silla, C., Freitas, A.: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery 22(1-2), 31–72 (2011)
Slavkov, I., Gjorgjioski, V., Struyf, J., Dzeroski, S.: Finding explained groups of time-course gene expression profiles with predictive clustering trees. Molecular BioSystems 6, 729–740 (2010)
Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Machine Learning 73(2), 185–214 (2008)
Ženko, B., Džeroski, S.: Learning classification rules for multiple target attributes. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 454–465. Springer, Heidelberg (2008)
Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, pp. 311–321. SIAM, Philadelphia (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pugelj, M., Džeroski, S. (2011). Predicting Structured Outputs k-Nearest Neighbours Method. In: Elomaa, T., Hollmén, J., Mannila, H. (eds) Discovery Science. DS 2011. Lecture Notes in Computer Science(), vol 6926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24477-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-24477-3_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24476-6
Online ISBN: 978-3-642-24477-3
eBook Packages: Computer ScienceComputer Science (R0)