Skip to main content

Global and Local Spatial Autocorrelation in Predictive Clustering Trees

  • Conference paper
Discovery Science (DS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6926))

Included in the following conference series:

Abstract

Spatial autocorrelation is the correlation among data values, strictly due to the relative location proximity of the objects that the data refer to. This statistical property clearly indicates a violation of the assumption of observation independence - a pre-condition assumed by most of the data mining and statistical models. Inappropriate treatment of data with spatial dependencies could obfuscate important insights when spatial autocorrelation is ignored. In this paper, we propose a data mining method that explicitly considers autocorrelation when building the models. The method is based on the concept of predictive clustering trees (PCTs). The proposed approach combines the possibility of capturing both global and local effects and dealing with positive spatial autocorrelation. The discovered models adapt to local properties of the data, providing at the same time spatially smoothed predictions. Results show the effectiveness of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bel, D., Allard, L., Laurent, J., Cheddadi, R., Bar-Hen, A.: Cart algorithm for spatial data: application to environmental and ecological data. Computational Statistics and Data Analysis 53, 3082–3093 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proc. 15th Intl. Conf. on Machine Learning, pp. 55–63 (1998)

    Google Scholar 

  3. Breiman, L., Friedman, J., Olshen, R., Stone, J.: Classification and Regression trees. Wadsworth & Brooks, Belmont (1984)

    MATH  Google Scholar 

  4. Brent, R.: Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  5. Ceci, M., Appice, A.: Spatial associative classification: propositional vs structural approach. Journal of Intelligent Information Systems 27(3), 191–213 (2006)

    Article  Google Scholar 

  6. Demšar, D., Debeljak, M., Lavigne, C., Džeroski, S.: Modelling pollen dispersal of genetically modified oilseed rape within the field. In: Abstracts of the 90th ESA Annual Meeting, p. 152. The Ecological Society of America (2005)

    Google Scholar 

  7. Džeroski, S., Gjorgjioski, V., Slavkov, I., Struyf, J.: Analysis of time series data with predictive clustering trees. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 63–80. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Ester, M., Kriegel, H., Sander, J.: Spatial data mining: A database approach. In: Proc. 5th Intl. Symp. on Spatial Databases, pp. 47–66 (1997)

    Google Scholar 

  9. Fotheringham, A.S., Brunsdon, C., Charlton, M.: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, Chichester (2002)

    MATH  Google Scholar 

  10. Gora, G., Wojna, A.: RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood. In: Proc. 13th European Conf. on Machine Learning, pp. 111–123 (2002)

    Google Scholar 

  11. Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial data sets: A general approach. IEEE Trans. Knowl. Data Eng. 16(12), 1472–1485 (2004)

    Article  Google Scholar 

  12. Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in relational learning. In: Proc. 9th Intl. Conf. on Machine Learning, pp. 259–266 (2002)

    Google Scholar 

  13. Kühn, I.: Incorporating spatial autocorrelation invert observed patterns. Diversity and Distributions 13(1), 66–69 (2007)

    Google Scholar 

  14. Legendre, P.: Spatial autocorrelation: Trouble or new paradigm? Ecology 74(6), 1659–1673 (1993)

    Article  Google Scholar 

  15. LeSage, J.H., Pace, K.: Spatial dependence in data mining. In: Data Mining for Scientific and Engineering Applications, pp. 439–460. Kluwer Academic, Dordrecht (2001)

    Chapter  Google Scholar 

  16. Li, X., Claramunt, C.: A spatial entropy-based decision tree for classification of geographical information. Transactions in GIS 10, 451–467 (2006)

    Article  Google Scholar 

  17. Malerba, D., Appice, A., Varlaro, A., Lanza, A.: Spatial clustering of structured objects. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 227–245. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Malerba, D., Ceci, M., Appice, A.: Mining model trees from spatial data. In: Proc. 9th European Conf. on Principles of Knowledge Discovery and Databases, pp. 169–180 (2005)

    Google Scholar 

  19. Mehta, M., Agrawal, R., Rissanen, J.: Sliq: A fast scalable classifier for data mining. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 18–32. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  20. Michalski, R.S., Stepp, R.E.: Machine Learning: An Artificial Intelligence Approach. In: Learning From Observation: Conceptual Clustering, pp. 331–363 (2003)

    Google Scholar 

  21. Pace, P., Barry, R.: Quick computation of regression with a spatially autoregressive dependent variable. Geographical Analysis 29(3), 232–247 (1997)

    Article  Google Scholar 

  22. Robinson, W.S.: Ecological correlations and the behavior of individuals. American Sociological Review 15, 351–357 (1950)

    Article  Google Scholar 

  23. Scrucca, L.: Clustering multivariate spatial data based on local measures of spatial autocorrelation. Università di Puglia 20/2005 (2005)

    Google Scholar 

  24. Tobler, W.: A computer movie simulating urban growth in the Detroit region. Economic Geography 46(2), 234–240 (1970)

    Article  Google Scholar 

  25. Zhang, P., Huang, Y., Shekhar, S., Kumar, V.: Exploiting spatial autocorrelation to efficiently process correlation-based similarity queries. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 449–468. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stojanova, D., Ceci, M., Appice, A., Malerba, D., Džeroski, S. (2011). Global and Local Spatial Autocorrelation in Predictive Clustering Trees. In: Elomaa, T., Hollmén, J., Mannila, H. (eds) Discovery Science. DS 2011. Lecture Notes in Computer Science(), vol 6926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24477-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24477-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24476-6

  • Online ISBN: 978-3-642-24477-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics