Skip to main content

“Tell Me More”: Finding Related Items from User Provided Feedback

  • Conference paper
Discovery Science (DS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6926))

Included in the following conference series:

  • 1388 Accesses

Abstract

The results returned by a search, datamining or database engine often contains an overload of potentially interesting information. A daunting and challenging problem for a user is to pick out the useful information. In this paper we propose an interactive framework to efficiently explore and (re)rank the objects retrieved by such an engine, according to feedback provided on part of the initially retrieved objects. In particular, given a set of objects, a similarity measure applicable to the objects and an initial set of objects that are of interest to the user, our algorithm computes the k most similar objects. This problem, previously coined as ’cluster on demand’ [10], is solved by transforming the data into a weighted graph. On this weighted graph we compute a relevance score between the initial set of nodes and the remaining nodes based upon random walks with restart in graphs. We apply our algorithm “Tell Me More” (TMM) on text, numerical and zero/one data. The results show that TMM for almost every experiment significantly outperforms a k-nearest neighbor approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery of association rules. In: ADMA, pp. 307–328 (1996)

    Google Scholar 

  2. Cilibrasi, R., Vitányi, P., Wolf, R.: Algorithmic clustering of music. In: 4th International Conference on WEB Delivering of Music, pp. 110–117 (2004)

    Google Scholar 

  3. Coenen, F.: The lucs-kdd discretised/normalised arm and carm data library

    Google Scholar 

  4. Craswell, N., Szummer, M.: Random walks on the click graph. In: SIGIR, pp. 239–246 (2007)

    Google Scholar 

  5. Dean, J., Henzinger, M.: Finding related pages in the world wide web. Computer Networks 31(11-16), 1467–1479 (1999)

    Article  Google Scholar 

  6. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum 40(1), 64–69 (2006)

    Article  Google Scholar 

  7. Denoyer, L., Gallinari, P.: Report on the XML mining track at inex 2005 and inex 2006: categorization and clustering of XML documents. SIGIR Forum 41(1), 79–90 (2007)

    Article  Google Scholar 

  8. Faloutsos, C., Megalooikonomou, V.: On data mining, compression, and Kolmogorov complexity. Data Mining and Knowledge Discovery 15(1), 3–20 (2007)

    Article  MathSciNet  Google Scholar 

  9. Fuxman, A., Tsaparas, P., Achan, K., Agrawal, R.: Using the wisdom of the crowds for keyword generation. In: WWW (2008)

    Google Scholar 

  10. Ghahramani, Z., Heller, K.: Bayesian sets. In: Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  11. Haveliwala, T.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

    Article  Google Scholar 

  12. Haveliwala, T., Gionis, A., Klein, D., Indyk, P.: Evaluating strategies for similarity search on the web. In: WWW, pp. 432–442 (2002)

    Google Scholar 

  13. De Knijf, J.: Mining tree patterns with almost smallest supertrees. In: SIAM International Conference on Data Mining. SIAM, Philadelphia (2008)

    Google Scholar 

  14. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.: The similarity metric. IEEE Transactions on Information Theory 50(12), 3250–3264 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  16. Onuma, K., Tong, H., Faloutsos, C.: Tangent: a novel, ’surprise me’, recommendation algorithm. In: KDD, pp. 657–666 (2009)

    Google Scholar 

  17. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project (1998)

    Google Scholar 

  18. Pan, J., Yang, H., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation discovery. In: KDD, pp. 653–658 (2004)

    Google Scholar 

  19. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)

    MATH  Google Scholar 

  20. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: SIAM International Conference on Data Mining (2006)

    Google Scholar 

  21. Sun, J., Qu, H., Chakrabarti, D., Faloutsos, C.: Neighborhood formation and anomaly detection in bipartite graphs. In: IEE Intl. Conf. on Data Mining, pp. 418–425 (2005)

    Google Scholar 

  22. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solutions. In: KDD, pp. 404–413 (2006)

    Google Scholar 

  23. Tong, H., Faloutsos, C., Pan, J.: Random walk with restart: fast solutions and applications. Knowl. Inf. Syst. 14(3), 327–346 (2008)

    Article  MATH  Google Scholar 

  24. Voorhees, E.: Variations in relevance judgments and the measurement of retrieval effectiveness. In: SIGIR, pp. 315–323 (1998)

    Google Scholar 

  25. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1), 169–214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xin, D., Han, J., Yan, X., Cheng, H.: On compressing frequent patterns. Data & Knowledge Engeneering 60(1), 5–29 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Knijf, J., Liekens, A., Goethals, B. (2011). “Tell Me More”: Finding Related Items from User Provided Feedback. In: Elomaa, T., Hollmén, J., Mannila, H. (eds) Discovery Science. DS 2011. Lecture Notes in Computer Science(), vol 6926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24477-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24477-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24476-6

  • Online ISBN: 978-3-642-24477-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics