“Tell Me More”: Finding Related Items from User
Provided Feedback.

Jeroen De Knijf', Anthony Liekens?, and Bart Goethals'

! Department of Mathematics and Computer Science, Antwerp University
2 VIB Department of Molecular Genetics, Antwerp University

Abstract. The results returned by a search, datamining or database engine of-
ten contains an overload of potentially interesting information. A daunting and
challenging problem for a user is to pick out the useful information. In this paper
we propose an interactive framework to efficiently explore and (re)rank the ob-
jects retrieved by such an engine, according to feedback provided on part of the
initially retrieved objects. In particular, given a set of objects, a similarity mea-
sure applicable to the objects and an initial set of objects that are of interest to
the user, our algorithm computes the k most similar objects. This problem, previ-
ously coined as ’cluster on demand’ [10], is solved by transforming the data into
a weighted graph. On this weighted graph we compute a relevance score between
the initial set of nodes and the remaining nodes based upon random walks with
restart in graphs. We apply our algorithm “Tell Me More” (TMM) on text, numer-
ical and zero/one data. The results show that TMM for almost every experiment
significantly outperforms a k-nearest neighbor approach.

1 Introduction

The increasing usage of information technology to store, process and exchange data the
last decades, has resulted in the availability in enormous amounts of data. One of the
major challenges in modern society is to efficiently find and retrieve the desired infor-
mation. Although a vast amount of efficient and powerful tools are available to assist
in the daily information need, the number of potentially interesting objects retrieved is
in general tremendous and unrelated to the user needs. For a user it is an challenging
task, if the goal can be accomplished at all, to filter out all or a great deal of the useful
objects. It is our belief that the main problem is not the expressiveness of the query lan-
guage, but that it is the case that user does not have enough apriori knowledge of what
is interesting and what is not. In order to enhance the retrieval capabilities of modern
search, mining and database engines, we argue that an interactive framework that allows
for simple and intuitive user directed exploration of the relevant objects is needed. A
particularly intuitive and appealing approach is where a user wants to find objects that
are similar to some manually inspected objects selected for his specific interest.

For example, consider a text retrieval engine. The initial results of the user query
contains about 10,000 relevant documents. After manually inspecting the ten highest
ranked documents, the user marked three of them as relevant. In the framework we
propose, the initial list of 10,000 documents is reordered, such that the most similar
documents to the three interesting documents are ranked higher. In this reordered list,

the user can again manually inspect the top ten documents and mark the interesting
ones. As a second example consider a binary database, where each record consists of
an unique customers id and all the goods purchased by the customer over the past year.
Suppose that a marketeer is interested in specific groups of customers, and tries to distill
interesting groups based on their purchasing behavior. A common approach to achieve
this, is by using a frequent itemset mining algorithm [1]. However, once some interest-
ing patterns are discovered and the initial group of interesting customers is identified,
the marketeer wants to find similar customers. That is, clients that purchased more or
less the same products. However, given an initial frequent itemset, the number of fre-
quent itemsets with a few different items can be overwhelming. Our approach can effi-
ciently compute the k£ most similar customers (i.e. transactions) with respect to an initial
customer group (i.e. set of transactions) of interest. The previous examples contained
situations where we proposed to improve the results of a search or datamining engine
by using user feedback, however one can also think off different situations where the
most related objects on itself might be of interest. For instance, consider a clinical trial
where some of the patients are given a drug to cure a certain disease. A natural question
is, which of the patients that did not participate at the trial are alike the patients that
responded positive to the drug.

In this paper we introduce an efficient and interactive framework Tell Me More
(TMM) to solve the aforementioned problems. We transform the problem into a weighted
graph, where the weight of the link between object ¢ and j is the similarity between ¢
and 7. On this graph we compute a relevance score between a set of nodes and the re-
maining nodes based upon random walks and random walks with restart in graphs. The
main contribution of the paper are as follows:

— We propose a framework to rerank the results of a search, database or datamining
engine based upon feedback provided by the user.

— We propose an algorithm to find the most related nodes based upon an non-empty
initial set of nodes.

— We propose a relatedness score that corrects for objects that are apriori highly re-
lated to many objects (hubs).

— TMM is independent of any specific data type, i.e. we demonstrate the usability on
binary, text and numerical data.

— Thorough experimental evaluation on real-life data shows that TMM significantly
outperforms a k-nearest neighbor approach. Moreover, the experimental results
shows that the adjustment of the score in order to compensate for objects that are
apriori similar to many objects in the dataset, leads, in a substantial number of
settings, in significant better results.

The remainder of this paper is organized as follows. In the next section we formally
define the problem. In section 3 we discuss related work. In the following section we
discuss random walks and random walks with restart and present our algorithm: Tell
Me More. In section 5 we discuss the experimental setup and similarity measures used.
Moreover, we report on the results obtained by TMM on various benchmark datasets
and compare these with the results obtained by the k-nearest neighbor approach and by
a ranking approach which is solely based upon random walk with restarts. Finally, in
the last section we draw conclusions and give directions for further research.

2 Problem Statement

Let D denote the data collection, that is D is the initial set of objects. The problem
addressed in this paper is the following: given a (small) subset S C D of the dataset,
find the £ most related objects to .S in D, with k a user specified parameter. In order
to conduct a proper evaluation and to avoid philosophical discussion of what is related,
we assume that there exists a set of m class labels C' = {cy, ..., ¢n}, such that every
object in the dataset belongs to exactly one class. Moreover, every object z € S belongs
to the same class. In this setting the most related objects, becomes the objects with the
same class as the class of the objects in S.

Given a dataset, an initial set of interest .S and a similarity function, the k-nearest
neighbor approach selects the k£ objects of D that are most similar to the objects in .S.
In case S contains a single object, KNN returns the & objects with the highest similarity
score. In case that S consists of multiple objects, then the similarity score for an object
j € D is the average similarity with respect to all objects in .S. Hence, KNN return the
k objects that have the largest average similarity score with the objects in S. We will
experimentally compare our approach with the KNN approach in section 5.

3 Related Work

The problem previously described can be seen as a special instance of clustering,
that is, some part of an unknown cluster is given and the task is to complete the cluster.
Because of this resemblance, the problem was previously coined by Ghahramani and
Heller [10] as ’clustering on demand’. In this paper we adopt this terminology. However,
in general the goal of clustering is to divide the data into multiple parts, where our
goal is to partially complete one cluster. Moreover, clustering is generally performed
unsupervised where in the clustering on demand setting we get some examples that
provides hints of the class membership.

Under the assumption that the objects consists of binary features, Ghahramani and
Heller [10] take a probabilistic Bayesian viewpoint to solve the clustering on demand
problem. In particular, for each object, every feature is assumed to be drawn from a fixed
Bernoulli distribution with parameter 6;, where §; equals the probability that feature j
is equal to one. Moreover, it is assumed that the objects are generated independently and
identically. In this setting, the relevance score for an object x boils down to :Pf)i’(()lc‘?).
Ghahramani and Heller [10] show that the log score can be computed efficiently with a
conjugate Beta prior on the Bernoulli model parameters. The main difference with our
approach is that we do pose no restriction on the type of data.

Very similar to our clustering on demand problem, is the problem of finding similar
web pages of the current web page [5, 12]. However, the problem mainly focus on find-
ing good similarity measures for web pages. Once an appropriate measure is found, a
standard k-nearest neighbor search is performed. A further difference with our approach
is that their problem is defined to find only related pages to one web page, where we
generalize to sets of objects.

Different types of random walks are commonly used in graph mining to measure the
relatedness between nodes in a graph. For example, in the work by Tong and Falout-
sos [22], where in a social network the goal is to find subgraphs that are ’best’ connected
with some given query nodes. In Pang et al. [18] the aim is, given a multimedia collec-
tion, to automatically assign keywords to multimedia objects. In Sun et al. [21] random
walks are used to derive the most similar nodes and the most abnormal nodes on bipar-
tite graphs. Also in the Information Retrieval field are random walks commonly used.
For example, Craswell and Szummer [4] use a random walk on the bipartite clickgraph
to adjust the ranking of the search engine. In order to generate a set of appropriate key-
words for an online advertiser, Fuxman et al. [9] uses an approach where a bipartite
query-click graph is constructed. Given a set of URLSs that are of interest to the adver-
tiser, their method suggest keyword for the URL based upon performing a random walk
with absorbing states on the bipartite click graph.

This overview of related work is far from complete, however to summarize all work
that is somewhat related demands a survey paper on itself. Especially in the area of
Information Retrieval and Web Mining, there are many methods bases upon random
walk with restarts to find related objects. Although TMM also uses random walks with
restarts to rank objects, there are some major differences with the different methods that
make use of random walks with restart. First, TMM find related objects based upon user
provided feedback. Second, our framework is suitable for any type of data, as long as
their is a similarity measure applicable between the objects. Finally, instead of solely
using the score obtained by performing random walks with restarts, we also adjust the
score for the hubinnes of the nodes. In section 5, we show that this adjustment for
hubiness does result, in a substantial number of settings, in significant improvement.

4 Algorithm

In this section we will present our main algorithm. First we describe how our prob-
lem can be transformed to a weighted graph. Then we discuss random walks and ran-
dom walks with restarts on graphs. Next we present our TMM algorithm. Finally, we
give a straightforward k-nearest neighbor algorithm.

4.1 Graph Construction

The first step is to transform the problem into a graph based setting. A graph G =
{V, E, \} is defined as an undirected weighted graph, where V is a set of vertices, E a
set of edges (unordered pair of vertices) and A a labeling function that assigns a weight
from the interval [0, 1] to each edge, i.e. A : E — [0,1]. Given our dataset D and a
similarity function Sim(i, j) that gives for every pair of objects from D a similarity
score between ¢ and j in the [0, 1] interval. A score of 1 meaning that the objects are
identical, while a score of 0 implies that the objects are completely dissimilar. The
graph G is constructed as follows: First, all objects ¢ in the dataset D are added as
nodes in the graph G. Second, for every unordered pair of vertices ¢ and j, with i # j,
and edge is added if Sim(i,j) > 0. Furthermore, the weight of the edge is equal to

the similarity between ¢ and j, that is A{i,j} = Sim(i,j). Note that, in general this
graph will be dense. Specifically , this graph is often an (almost) complete graph. This
is caused by the particular setting, where the dataset is the initial answer set from an
search or datamining engine. Hence, the objects in the dataset are apriori related with
each other.

4.2 Random Walk with Restarts

Informally, a random walk on a graph G can be described as follows: consider a random
particle currently at node v in G, at each iteration the particle moves to a neighbor with a
probability that is proportional to its edge weight. The steady state probability of a node
w, denoted as u(w) states the probability that the particle visits this node in the long
term. Intuitively, the steady state probability of node w states the importance of w in the
graph. In our setting, u(w) defines how central w is in the graph. Under the assumption
that a random walk on G is ergodic, it is well known that the steady state probability of
a random walk on G satisfies Equation 1, with M the column normalized adjacency
matrix of G.

Upt1 = Mg X ug (D

Like a random walk, a random walk with restart can informally be described as a
particle currently at node v in G. Let g 4 be the normalized vector where for each node
in S the corresponding value in qg is set to 1, while the remaining values of gg are
set to 0. Informally, gg contains the restart nodes, with an uniform distribution over
the nodes in S. Additional to moving at each iteration to one of its neighbors with a
probability that is proportional to its edge weight, the particle has a probability ¢ of
moving uniformly at random to one of the restart nodes. The relevance score of node
w with the set of nodes S (ug(w)) is then defined as the steady state probability of the
random walk with restart. Under the assumption that a random walk on G is ergodic,
the random walk with restart on a graph G satisfies Equation 2. With M the column
normalized adjacency matrix of G, c the restart probability and g4 the restart vector.

us=(1—¢)x Mg xus+cxqg 2)

In our specific setting, we work with undirected, non-bipartite and connected graphs.
It trivially follows that a random walk on these graph is ergodic. Consequently, in the
limit, random walks and random walks with restart converges to a steady state proba-
bility.

The steady state probability of a random walk with restart, can be easily computed
by iteratively applying Equation 2, this method is also known as the power iteration
method. The pseudo code to compute the steady state probability of a random walk
with restart is given in Algorithm 1. Note that, Algorithm 1 can be trivially used to
compute the steady state probability of a random walk. In this case the input parameter
c should be set to zero. Also note that in the actual implementation, we do not have to
construct the graph. Instead, a normalized version of the similarity matrix is sufficient
to obtain the desired output. Further worth mentioning, is that different optimizations
techniques are available to compute the steady state probability of a random walk on

Algorithm 1 Random Walk with Restart

Input: adjacency matrix Mg, restart probability c, set of restart nodes .S
Output: us

1: initialize g4 < O

2: forall i € Sdo

3: gg+1

4: end for

5: normalize q ¢

6: column normalize Mo

7: while not converged us do

8 ug«— (1—c)xMgxus+cXqg
9: end while

10: return ugs

graphs. In particular, Tong et al. [23] report significant speedups compared with the
power iteration method.

4.3 Tell Me More

Most graph mining algorithms based upon random walks (for example [18]) solely uses
the steady state probability as the relevance score between nodes. However, consider the
following example: Given two nodes w and v, and a set of restart nodes S. Suppose that
ug(w) = 0.2 and ug(v) = 0.3, moreover u(w) = 0.1 and u(v) = 0.6. Hence, the
apriori relevance of node v is much higher than the relevance score of node v with re-
spect to the set of nodes S. In fact the initial set .S harms the importance of node v,
while node w becomes far more important due to the initial set S. But nevertheless,
when only using the steady state probability of the random walk with restart, v is pre-
ferred above w. In our Algorithm, we take the prior importance of a node into account
to adjust the score of the steady state probability. In particular, for an initial set .S the
score of a node v is determined by

Intuitively, this adjustment lowers the probability of objects that are similar to most
other objects, however the prior importance of a node is not completely neglected. The
restart probability parameter (needed in Algorithm 1) was determined experimentally.
We found that a broad range of values (between 0.1 and 0.99) delivered almost equally
good results. However, the optimal setting for all experiments was when the restart
probability was set to 0.99. Note that, in this setting the influence of the nodes in the
restart vector is maximal. Moreover, a restart probability of 1 is pointless, because then
the steady state probabilities of nodes that are not in the restart vector is equal to zero.
The TMM algorithm is given in Algorithm 2. The input parameters are the dataset
D, the initial objects of interest S and the number of related objects (i.e. k) a user is
interested in. The first step is to create the adjacency matrix M. That is, the adjacency

matrix representation of the graph G, constructed from D. Note that, in this step we
assume that the similarity function between objects in the dataset is available. In the
next steps the steady state probability of the random walk with restart and the random
walk is computed. This step is performed by Algorithm 1. Then the final relevance
score for every node in the dataset is computed. Finally, the k& objects with the highest
relevance score are returned.

Algorithm 2 Tell Me More

Input: Dataset D, set of initial objects of interest S, k
Output: list of £ most interesting objects given S
Mg¢ « construct the normalized adjacency matrix
L Uus — RWR(MG, 0.997 S)

: u —RWR(Mg, 0, .5)

: foralld € D do

LK (d) — us(d) x %50

: end for

: return the k objects with the highest score in LK

S Experiments

In this section we describe the experiments conducted on different datasets. First,
we discuss the general experimental setup. Then, for each of the different types of
data, we discuss in detail the similarity measure and the pre-processing step performed.
Additionally, we characterize the adopted datasets and report about the obtained results.

The goal of the experiments is to evaluate the effectiveness of TMM, that is how
well TMM performs in finding similar objects. We compare the results of TMM with the
results obtained by KNN. Additionally, to investigate the effect of the score adjustment,
we compare TMM with a pure random walk with restart based ranking. That is, we only
use Algorithm 1 (RWR) to compute the ranking of the nodes. Note that, the goal of the
experiments is not to find the best similarity function. We used off the shelf similarity
measures that are available for the particular types of objects.

In order to conduct a proper evaluation, we assume that every object in the dataset
belongs to exactly one class. Similarity between objects is then defined as belonging to
the same class. The primary performance measure is precision at a certain cut-off value,
denoted as @k. That is, given that the objects in .S are of class ¢, the number of objects
of class c in the k highest ranked objects divided by k. More formally, let ¢ be the class
label of the documents in the initial set .S, and let L be the list of the £ highest ranked
documents, then

of documents of class cin L

Qk
L]

Note that, in our experiments we did not count objects of S that were in the top
k of most related objects. The reason for this, is because TMM always returned the
objects of S as most relevant objects. However, this would lead to a strong bias in favor
of TMM. In our experiments we used different values for k, namely k£ = 10, 20, 50
and 100. For a dataset D with |C| classes, we randomly selected for each class |S| =
1,2, 3, 4 objects as initial input. For each of these sets we run our TMM algorithm, the
k-nearest neighbor algorithm and the ranking method solely based upon RWR. Next, we
computed the score at the different cutoff points. Depending on the number of elements
in the dataset, we repeated this procedure either 100 or 1000 times. We combine the
results of the different random initial sets of the same size and the different classes, and
reported the average precision@k over these combined results. Hence, for each initial
set size and each k value, we report the mean value of |C| x n precision @k scores, with
|C| the number of classes and n = 100 or n = 1000 depending on the dataset. In order
to test whether the scores obtained for TMM are significantly different from the scores
obtained by the other approaches, we performed a paired ¢ test over the results at a 0.95
confidence level. Whenever the scores obtained for a certain batch are significantly
higher than the scores obtained for a corresponding batch with another algorithm, we
printed the results in boldface.

All experiments where conducted on a quad core 2.1Ghz desktop computer, con-
taining 4G B of main memory. Over all used datasets, the response time of TMM was
reasonable good. At worst it took TMM around 4.1 second to provide the k£ most re-
lated objects, while in the best case the results were completed in less than 1 second.
However, the run time can easily be improved by using more sophisticated methods (for
example the work described in [23]) to compute random walks on graphs. Moreover,
another feature of their algorithm is that it does not require that the complete matrix
is loaded into main memory, which makes it feasible to run random walks on extreme
large datasets.

5.1 Text Documents

In order to apply our method to search engines for text documents, we represent each
object (document) d € D as a bag of words, i.e. a vector where each dimension corre-
sponds to a separate word. In case a word occurs in the document, then its corresponding
value in the vector will be non zero. The dimension of the vectors is equal to the number
of different words in the dataset. We used the so called tf-idf [19] weighting scheme to
calculate a value for a word in the document. That is, the weight vector v for document
de Dis: [wyg,...,Wn,q. Where wy g4 =

D]

With ¢ f (¢, d) the term frequency of ¢ in d, i.e. the number of different occurrences of the
term ¢ in document d. And log% the inverse document frequency, that is the
logarithm of the total number of documents in D divided by the number of documents in

which ¢ occurs. The similarity between two text documents is then defined as the cosine

similarity between the two vectors that represent the document. That is, let d,e € D,
and let there be n different terms in the collection then Sim(d, e) =

de —1_ Z:‘L:I Wi,d X Wi e
[ll[[lell Doy Wi g X D Wi

Clearly, the similarity takes as maximal value 1 whenever two documents are iden-
tical. Likewise, when there is no term in common between the documents the similarity
equals 0. Hence, this similarity function can be used in our framework.

Test Collection We used two different document collections, namely the Wikipedia
XML dataset and the Reuters 21578 text categorization dataset. The Wikipedia XML
dataset [6] was provided for the document mining track at INEX 2006 [7]. The collec-
tion consists of 150,094 XML documents with 60 different class labels. The collection
was constructed by converting web pages from the Wikipedia project to XML docu-
ments. The class labels correspond to the Wikipedia portal categories of the web pages.
For the document mining track a subset of the total Wikipedia collection was selected
such that each document belonged to exactly one class. We did not use any structural
features of the XML documents, only the content of XML documents. We used the tf-
idf vector for all documents, that was provided by the organizers of the XML document
mining track. In order to reduce the number of objects in the dataset, such that the ma-
trix would fit into main memory, we selected from the complete dataset the documents
that belong to one of the four largest classes. In total our dataset consists of 13,146
documents divided over four different classes.

The Reuters-21578 text categorization dataset, is a collection of documents that
appeared on Reuters news wire in 1987. These documents were manually assembled
and categorized. From this collection we selected only the documents that belong to
exactly one category. From the resulting set, we filtered out all documents that belonged
to a category with less than hundred documents. The resulting dataset contains 7, 783
documents divided over ten classes.

In order to use the dataset in our experiments, we used the Lemur Toolkit 3 to
pre-process the data. We first performed stemming and stop word removal, then we
computed over the remaining data the tf-idf score for the words in the documents.

Results The results obtained over the text collection are displayed in Table 1. The re-
sults reported for the Wikipedia collection are the average values over 4, 000 runs, i.e.
1,000 randomly selected initial sets S per class. For all setting, the results obtained
by TMM where significantly better than the corresponding results with the KNN algo-
rithm. The difference is maximal when the ten most similar documents are considered.
For example, for k = 10 and |S| = 4 the score for the TMM approach is more than 7
percent points higher than the score obtained by the KNN algorithm. But also in case
that more than ten similar documents are required, the difference is still considerable;
the score for TMM is between 1 and 7 percent points higher than the score obtained

3 http://www.lemurproject.org/

TMM RWR KNN

@10 | @20 | @50 | @100 || @10 | @20 | @50 |@100|| @10 | @20 | @50 (@100
53.10"|51.31%|48.34%|46.077||53.10(51.31|48.34|46.07||46.97|45.20|43.15|41.34
55.02%|53.03%50.10%|47.73"(|55.02]53.03|50.10|47.73||48.41|46.91|44.62|42.72
56.40"|54.48%51.72%|49.52%||56.40|54.48|51.72|49.52||149.72|48.06|45.97|43.81
56.92"|54.85%51.96%49.617||56.92(54.85|51.96|49.61||49.81|48.38|46.25|44.19
70.23"|67.66 |63.88|57.87(/69.92|67.26|62.74|56.24(/169.78/67.10(62.41|55.69
74.38"|71.89%168.37|62.45||74.21|71.85(67.39|60.07||72.85|70.43|65.95|59.33
78.10%|76.02%|72.57|66.43||78.16|75.85(71.23|64.33||76.11|73.98(69.24|62.31
79.60"|77.41%|74.12|68.00||79.40|77.34|73.06|66.00||78.15|75.58|70.95|63.88

B W = w N =T

Table 1. Results obtained on the Wikipedia collection (top, W) and the Reuters text categorization
dataset (bottom, R). Boldfont means that the results for TMM are significantly better (at 95%
confidence level), than the corresponding results for both the RWR and the KNN approach. An
asterisk indicated that the results are significantly better over the KNN approach only.

for the KNN approach. Further noteworthy, is that the ranking for both TMM and KNN
keeps improving when more documents are added to the initial set of interesting docu-
ments S.

Comparing TMM with the RWR approach, we have the remarkable result that TMM
and RWR obtain exactly the same score on the Wikipedia dataset. Further investiga-
tion revealed that also the ranking of the documents was identical between the two ap-
proaches. These results indicate, with the similarity measure and pre-processing steps
used, that there were no hub nodes in the Wikipedia collection.

Because some classes of the Reuters collection contain less than 1,000 documents,
the reported presicion@k results are the average values over 1,000 runs. That is, for
each of the ten classes 100 randomly selected initial sets S were generated. Also in
this case are the results obtained by TMM significantly better than the results of the
KNN approach. However, the difference in accuracy scores is lower then the difference
obtained over the Wikipedia collection.

The differences reaches its maximum value, of more than 4 percent points, when
more initial documents of interest are considered and when the cutoff value is large
enough. In the other settings is the difference between 0.5 and 2 percent points. Further
noteworthy, is that for both methods the addition of extra documents in the initial set .S
increases the predictive performance.

Comparing TMM with the RWR approach, it can be observed that there is a signifi-
cant improvement over the accuracy scores when the RWR score is adjusted to compen-
sate for hub nodes. However, this only occurs for larger cutoff values, i.e. @50, @100.
Note that, the difference is increasing when more documents are considered. There is
one setting were the RWR algorithm obtains better results than the TMM approach,
namely with @10 and |S| = 3. However, this difference is minimal and neglectable.

5.2 Binary Data

Besides the wide availability of binary datasets, many data can be represented as binary
strings. For example, the work by Cilibrasi et al. [2] transforms music files to binary

T™MM RWR KNN
@10 | @20 | @50 | @100 || @10 | @20 | @50 |@100|| @10 | @20 | @50 |@100
72.41|68.58|63.49|60.19/66.64|63.28/59.14|56.73||63.78]59.69|53.78|43.78
69.15(/65.9461.84|58.83((62.14|59.70(56.92|55.34||/60.95|58.36(52.16|42.95
67.87/65.05(61.17|61.46(/60.23|58.55(56.24|54.98||59.01|57.55]50.84|42.89
65.46(63.37(59.92|57.97(58.19(56.40(54.92(54.01||57.31|55.71{50.89|42.92
99.717(99.43%198.35"|97.03(|99.67(99.47|98.33]96.94|/99.56|98.26|91.76|76.94
99.84 (99.63"(98.97*97.98(|99.83|98.65(98.83(97.59(/99.75(99.02(94.94|85.22
99.89%(99.75%199.35"(98.78"(199.86(99.28|99.11{98.71((99.75[99.28|96.30|89.15
99.85(99.75"|99.16[98.58(/99.88/99.73]99.13|98.55((99.84/99.37(97.10|91.83

N U e I N O N)

Table 2. Results obtained on the Chess dataset (top, C) and the Mushroom dataset (bottom, M).
Bold font means that these results are significantly better (at 95% confidence level), than the
corresponding results for both the RWR and the KNN approach. An asterisk indicated that the
results are significantly better over the KNN approach only.

strings. Due to the wide availability of binary data and the universal applicability, we
include some experiments with binary data. In this setting, each object x € D is a binary
vector of length n, i.e. x = [i1,...,,]. With ¢; € {0,1}, and n the fixed number of
features for the objects in the dataset.

Recently, there has been a growing interest in the data mining community in us-
ing compression to extract valuable knowledge, see for instance [25, 8,26, 13]. This
is because, as stated by Faloutsos and Megalooikonomou [8], several core aspect of
datamining are essentially related with compression. In order to define a similarity
score for binary data, we use a compression based similarity method, namely: normal-
ized compression distance [14]. The intuition behind this method is that two objects are
deemed close if we can significantly ’compress’ one given the information in the other.
Here compression is based on the ideal mathematical notion of Kolmogorov complex-
ity, which is unfortunately not effectively computable. However, this similarity measure
is approximated by using any available off the shelf compressor, e.g. gzip, zlib. More
formally, NC'D(x,y) =

C(z,y) — min(C(x),
max(C(x), C(y)

Cly))
—

Where C(z,y) is the compressed size of the concatenation of x and y. Likewise,
C(z) and C(y) is the length of the compressed version of = and y respectively. The
NCD value is minimal, that is NC'D(z,y) = 0, when x = y. Moreover, when there is
no common information between x and y the NC'D value equals one. Hence, in order
to fit in our framework the similarity between two items x and y (Sim/(z, y)) is defined
as:

1—NCD(z,y).

The NCD between objects was computed with a tool # provided by the authors of [14].

* available at http://www.complearn.org/

Testsets We used binary versions of the Chess(kr-kp) and the Mushroom UCI dataset.
These binary version where made available by [3]. The Chess dataset contains 3, 196
objects, divided over two classes. The Mushroom dataset contains 8, 124 objects and
also consists of two classes.

Results The results on the binary datasets are shown in Table 2. The results for the
Chess dataset are obtained by computing the average values over 2, 000 runs, i.e. 1,000
randomly selected initial sets .S per class. For this dataset are all the results of the
TMM approach significantly better than results for both the KNN as well as the RWR
approach. The advantage of TMM is considerable: it varies between 16 percent points
and 6 percent point over the KNN approach, and between 3 and 6 percent points over
the RWR approach. Notice, that for all algorithms the addition of objects to the initial
set S, especially for lower cutoff values, leads to remarkably worse results. Although
this observation seems counter intuitive to the principle of using feedback to improve
the ranking, a possible explanation lies in the experimental setup. In our experimental
setting, we randomly select objects from a given class to be used as initial set. When
the objects of a given class are widely spread, it is likely that by selecting at random
objects from this class, these objects can be quite dissimilar from each other.

First worth noticing about the results on the Mushroom dataset, is that all algo-
rithms obtained a remarkably good ranking. This suggests that the NCD is indeed a
good similarity measure to use with binary data. The second remarkable observation
is that the difference of the scores between TMM and KNN is largely dependent on
the cutoff value. For example, when only the ten most similar objects are considered
the difference between TMM and KNN varies between 0.15 and 0.04 percent points.
However, if we consider the parameter setting @100, then the difference ranges from
7 to 20 percent points. The difference between TMM and the RWR method, is for all
cases minimal. Solely in the setting, where the number of initial objects is low and the
cutoff value is large, resulted in significantly better performance for TMM. In all other
settings were the two methods equally good. That is, most of the times TMM obtained
better performance and sometimes RWR obtained a higher precision score, but all these
differences in obtained precision @k are minimal and neglectable.

5.3 Numerical Data

The last type of data considered in our experiments is numerical data. That is, every
object x in the dataset is a point in a d-dimensional space R?. Hence, each object x
in the dataset is a numerical vector of length d, i.e. x = [i1,...,i4] with i; € R for
1<j<d

For numerical data we use a similarity measure based upon the Euclidean distance.
The similarity between points x and y in the dataset, equals one minus the Euclidean
distance between x and y, divided by the maximal distance between any point two
points in the dataset. That is, with A(z,y) the Euclidean distance between x and y,
Sim(x,y) =

N Az, y)
max{A(i,j)|i,j € D}

TMM RWR KNN

@10 | @20 | @50 |@100 || @10 | @20 | @50 |@100|| @10 | @20 | @50 (@100
84.45|79.25|71.22(63.99||74.30(69.15(63.05|59.43||69.85/66.30/61.33|58.22
81.05|76.65|70.09|64.00(|72.55|67.83(62.29|59.23||70.07/67.00/62.14|59.32
85.90(81.33|72.99|64.23||73.40(69.03(63.56|59.32(|70.0767.00/62.14|59.32
84.10(79.00|71.31(65.75||71.45|67.65(62.60|60.31{/68.90{65.70|161.33|59.11
95.25(94.75|93.47|91.71|/94.25|93.25(91.36|88.21{|94.25(93.30|91.23|88.29
97.75(97.18|96.27|94.56(|96.00(95.33(93.79]|90.87{/96.00{95.35|93.78|90.91
97.80%(97.55|96.47(95.13(|96.70(95.88|94.14/91.21{|96.60{95.98|94.13|91.21
98.70(98.40(97.56|95.95(|97.30(96.80(95.67|92.86||97.70(97.03|95.57|92.83
84.807(83.48(80.59(79.15||83.25(81.03|77.76|75.28||82.00(80.48| 77.68|74.89
90.80|88.98(86.07|83.53||87.55(85.28(82.33|78.83||85.25|83.15|81.33|78.13
89.60|88.60|84.80(82.07(/84.60(83.05(79.90|76.40(|84.75|83.18|80.00|76.84
90.65|89.18(86.75|84.59(|86.80(84.35(80.40|77.75(|83.34|81.88|79.03|76.02

ST ORI I QO ORI TG U RSN N

Table 3. Results obtained for the Ionospehere dataset (I, top), the Breast cancer dataset (B, mid-
dle) and the Spambase dataset (S, bottom). Boldfont means that the result is significantly better
(at 95% confidence level), than the corresponding result for both the RWR and the KNN ap-
proach. Likewise, an asterisk means that the score is significantly better than the score for the
KNN approach only.

Hence, Sim(z,y) gets the value of 1 if z is identical to y and a value of 0 if and
y are the two points with the largest distance in the dataset.

Testsets We used three different datasets available at the UCI repository. Two of these
datasets contain a relatively low number of objects, namely 351 for the Ionosphere and
561 for the Breast Cancer dataset. The Spambase dataset contains 4, 601 objects. In all
three datasets are the objects divided over two classes. Due to the relatively low number
of objects in the Ionosphere and Breast Cancer dataset, we only conducted 200 runs per
initial set S, i.e. 100 runs for each class.

Results The results obtained over the numerical datasets are displayed in Table 3.
The first remarkable observation, which only holds for the numerical datasets, is that
the scores obtained for KNN and RWR are quite similar. That is, most of the times
RWR obtains a slightly higher score than KNN. This in contrast with earlier experi-
ments, where the scores obtained by RWR was, in general, considerably better than
the scores obtained with the KNN approach. The results in Table 3 show that TMM
performs—over all numerical datasets considered—significantly better in all but two
settings than RWR. Moreover, TMM obtained significantly higher scores in all settings
over KNN. The largest difference (more than 15 percent points) is obtained on the Iono-
sphere dataset. Likewise, the smallest significant difference (1 percent point) is obtained
on the Breast Cancer dataset.

6 Discussion & Conclusion

In this paper we introduced an interactive framework to effectively explore and rerank
objects retrieved by a search or datamining engine, based upon user provided feedback.
We argued that such an framework can be a valuable tool for a user to find the desired
information. The TMM approach can be used for very different data types and is in
spite of its naive implementation relatively efficient.

We thoroughly experimentally evaluated TMM, and for every dataset considered
for almost every setting, the results show that TMM performs significantly better at a
95 percent confidence level than a straightforward k-nearest neighbor approach. Also
the effect of the score adjustment in TMM, in order to compensate for objects that are
apriori similar to many objects, has a positive effect on the ranking results. For a sub-
stantial number of settings, this adjustment results in a significantly better ranking at a
95 percent confidence level. However, the improvement of TMM over a purely RWR
methods is dependent on the dataset. For the Wikipedia dataset there was no improve-
ment, which is likely caused because of the omission of hub nodes in the dataset. For
the Reuters dataset and the Mushroom dataset, the improvement of TMM resulted only
in a limited number of settings in significant better results. Nevertheless, in none of the
experiments conducted it was the case that the score adjustment resulted in significantly
worse results. Concluding, the proposed adjustment to compensate for hub nodes is, in
general, extremely valuable.

Another issue worth reflecting one, is the assumption we made that the objects are
similar if they belong to the same class. Obviously, this is a coarse level of similarity.
However, the alternative is to let a domain expert decide what is most related to an
object. For many data types, this is however an unrealistic option. In the IR field, where
it is common practice to let experts decide which documents are relevant for a given
query, it is an issue of debate [24]. In our case, we need a domain experts to judge the
relevance of document given a set of documents, with is even more cumbersome than
deciding whether a document is relevant given a query. For the other data types, it is
even more problematic for a domain expert to decide whether two objects are similar or
not. Hence, in order to perform an extensive proper evaluation the assumption that two
objects are related if they are from the same class is the best option that is achievable
for a wide range of different data types.

Concluding, the proposed framework Tell Me More offers and an interactive tool
that allows for simple and intuitive user directed exploration of the relevant objects.
The flexibility of TMM allows it to be used with different types of data in a search,
database or datamining engine. Moreover, because of its relatively quick response time,
TMM can be used in an online setting.

Interesting directions for further research includes the exploration of different sim-
ilarity functions between objects, especially appealing is a similarity function between
web pages that takes both the structure of the web (i.e. the link information) and the
content of the web page into account. Another direction is to let the user specify not
only the relevant objects but also the objects that are not of his interest.

References

1

w

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Agrawal, H. Mannila, R. Srikant, H.Toivonen, and A. Verkamo. Fast discovery of associ-
ation rules. In ADMA, pages 307-328, 1996.

. R. Cilibrasi, P. Vitanyi, and R. Wolf. Algorithmic clustering of music. In 4th International

Conference on WEB Delivering of Music, pages 110-117, 2004.

. F. Coenen. The lucs-kdd discretised/normalised arm and carm data library.
. N. Craswell and M. Szummer. Random walks on the click graph. In SIGIR, pages 239-246,

2007.

. J. Dean and M. Henzinger. Finding related pages in the world wide web. Computer Networks,

31(11-16):1467-1479, 1999.

. L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. SIGIR Forum, 40(1):64-69, 2006.
. L. Denoyer and P. Gallinari. Report on the XML mining track at inex 2005 and inex 2006:

categorization and clustering of XML documents. SIGIR Forum, 41(1):79-90, 2007.

. C. Faloutsos and V. Megalooikonomou. On data mining, compression, and Kolmogorov

complexity. Data Mining and Knowledge Discovery, 15(1):3-20, 2007.

. A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal. Using the wisdom of the crowds for

keyword generation. In WWW, 2008.

Z. Ghahramani and K. Heller. Bayesian sets. In Advances in Neural Information Processing
Systems, 2005.

T. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web
search. IEEE Trans. Knowl. Data Eng., 15(4):784-796, 2003.

T. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating strategies for similarity search
on the web. In WWW, pages 432-442, 2002.

J. De Knijf. Mining tree patterns with almost smallest supertrees. In SIAM International
Conference on Data Mining. SIAM, 2008.

. M. Li, X. Chen, X. Li, B. Ma, and P. Vitdnyi. The similarity metric. /[EEE Transactions on

Information Theory, 50(12):3250-3264, 2004.

D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning
databases, 1998.

K. Onuma, H. Tong, and C. Faloutsos. Tangent: a novel, ’surprise me’, recommendation
algorithm. In KDD, pages 657-666, 2009.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford Digital Library Technologies Project, 1998.

J. Pan, H. Yang, C. Faloutsos, and P. Duygulu. Automatic multimedia cross-modal correla-
tion discovery. In KDD, pages 653-658, 2004.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, Inc.,
New York, NY, USA, 1986.

A. Siebes, J. Vreeken, and M van Leeuwen. Item sets that compress. In SIAM International
Conference on Data Mining, 2006.

J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood formation and anomaly
detection in bipartite graphs. In IEE Intl. Conf. on Data Mining, pages 418-425, 2005.

H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and fast solutions. In
KDD, pages 404-413, 2006.

H. Tong, C. Faloutsos, and J. Pan. Random walk with restart: fast solutions and applications.
Knowl. Inf. Syst., 14(3):327-346, 2008.

E. Voorhees. Variations in relevance judgments and the measurement of retrieval effective-
ness. In SIGIR, pages 315-323, 1998.

J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: mining itemsets that compress. Data
Min. Knowl. Discov., 23(1):169-214, 2011.

D. Xin, J. Han, X. Yan, and H. Cheng. On compressing frequent patterns. Data & Knowledge
Engeneering, 60(1):5-29, 2007.

