Skip to main content

The South Zone: Distributed Algorithms for Alliances

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6976))

Included in the following conference series:

Abstract

We present novel results on and efficient deterministic as well as randomized synchronous message-passing distributed algorithms for generalized graph alliances, a new concept incorporating and expanding previous ones. An alliance is here a group of nodes of a connected network or a population fulfilling certain thresholds for their neighbourhood. More precisely, every node outside and inside the alliance must have a minimum number of neighbours inside the alliance. A threshold function defining this number may be specific to each node. We are interested in finding minimal alliances of generalized type: the threshold function might be any. We also investigate conditions in which it is possible to have anonymity, a praised property in population protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distributed Computing 21(3), 183–199 (2008)

    Article  MATH  Google Scholar 

  2. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007); PODC 2006, Special Issue

    Google Scholar 

  3. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-Stabilizing Local Mutual Exclusion and Daemon Refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. Journal of Algorithms 15, 385–415 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Centeno, C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible Conversions on Graphs. Accepted in Theoretical Computer Science (to appear)

    Google Scholar 

  6. Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: On Reversible and Irreversible Conversions. In: International Symposium on Distributed Computing (DISC 2010), pp. 395-397 (September 2010)

    Google Scholar 

  7. Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Reversible Iterative Graph Processes (under submission)

    Google Scholar 

  8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17, 643–644 (1974)

    Article  MATH  Google Scholar 

  9. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-Threshold Processes: Graph-Theoretical Threshold Models of the Spread of Disease and of Opinion. Discrete Applied Mathematics 157(7), 1615–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goddard, W., Hedetniemi, S.T., Jacobs, D.D., Trevisan, V.: Distance-k Information in Self-Stabilizing Algorithms. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 349–356. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  13. Gupta, A., Maggs, B.M., Oprea, F., Reiter, M.K.: Quorum Placement in Networks to Minimize Access Delays. In: ACM Symposium on Principles of Distributed Computing, PODC 2005 (July 2005)

    Google Scholar 

  14. Golovin, D., Gupta, A., Maggs, B.M., Oprea, F., Reiter, M.K.: Quorum Placement in Networks: Minimizing Network Congestion. In: ACM Symposium on Principles of Distributed Computing, PODC 2006 (July 2006)

    Google Scholar 

  15. Herlihy, M.: Concurrency and Availability as Dual Properties of Replicated Atomic Data. Journal of the ACM 37(2), 257–278 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hassin, Y., Peleg, D.: Average Probe Complexity in Quorum Systems. In: ACM Symposium on Principles of Distributed Computing (PODC 2001), pp. 180–189 (August 2001)

    Google Scholar 

  17. Jamieson, L.H.: Algorithms and Complexities for Alliances and Weighted Alliances of Various Types. Clemson University (May 2007)

    Google Scholar 

  18. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approximation. In: ACM Symposium on Principles of Distributed Computing, PODC 2003 (July 2003)

    Google Scholar 

  19. Kutten, S., Peleg, D.: Fast Distributed Construction of Small k-Dominating Sets and Applications. Journal of Algorithms 28(1), 40–66 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lenzen, C., Wattenhofer, R.: Minimum Dominating Set Approximation in Graphs of Bounded Arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 510–524. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Peleg, D.: Majority Voting, Coalitions and Monopolies in Graphs. In: International Symposium in Structured Information and Communication Complexity (SIROCCO 1996), pp. 152–169 (June 1996)

    Google Scholar 

  22. Peleg, D., Upfal, E.: A tradeoff between size and efficiency for routing tables. Journal of ACM 36, 510–530 (1989)

    Article  MATH  Google Scholar 

  23. Penso, L.D., Barbosa, V.: A Distributed Algorithm for Finding k-Dominating Sets. Discrete Applied Mathematics 141(1-3), 243–253 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rautenbach, D., Volkmann, L.: New Bounds on the k-domination number and on the k-tuple domination number. Applied Mathematics Letters 20(1), 98–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schneider, M.: Self-Stabilization. ACM Computing Surveys 25(1), 45–67 (1993)

    Article  Google Scholar 

  26. Srimani, P.K., Xu, Z.: Distributed Protocols for Defensive and Offensive Alliances in Network Graphs Using Self-Stabilization. In: International Conference on Computing: Theory and Applications (ICCTA 2007), pp. 27–31 (2007)

    Google Scholar 

  27. Wittmann, R., Zitterbart, M.: Multicast Communication: Protocols and Applications. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L. (2011). The South Zone: Distributed Algorithms for Alliances. In: Défago, X., Petit, F., Villain, V. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2011. Lecture Notes in Computer Science, vol 6976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24550-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24550-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24549-7

  • Online ISBN: 978-3-642-24550-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics