Skip to main content

A Pathway-Based Classification Method That Can Improve Microarray-Based Colorectal Cancer Diagnosis

  • Conference paper
Bio-Inspired Computing and Applications (ICIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6840))

Included in the following conference series:

  • 2582 Accesses

Abstract

Colorectal cancer is the third most commonly diagnosed cancer in the world. Microarray-based colorectal cancer diagnosis is increasingly paid more and more attentions. In view of a number of pathway information available in the KEGG database, this paper proposes to model pathways for colorectal cancer diagnosis, and as a result, a pathway-based classification method is developed. The proposed method can extract pathway information through modeling gene associations in a pathway via regression. Experimental results on six pathways show that the proposed method remarkably improves the performance of microarray-based colorectal cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liao, J.G., Chin, K.-V.: Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics 23(15), 1945–1951 (2007)

    Article  Google Scholar 

  2. Shipp, M., et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68–74 (2002)

    Article  Google Scholar 

  3. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  4. Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1999)

    Article  Google Scholar 

  5. Leek, J.T., Storey, J.D.: Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genet. 3(9), e161 (2007)

    Article  Google Scholar 

  6. Khan, J., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7(6), 673–679 (2001)

    Article  Google Scholar 

  7. Wang, Z., Palade, V., Xu, Y.: Neuro-Fuzzy Ensemble Approach for Microarray Cancer Gene Expression Data Analysis. In: 2006 International Symposium on Evolving Fuzzy Systems (2006)

    Google Scholar 

  8. Duan, K.-B., et al.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Transactions on Nanobioscience 4(3), 228 (2005)

    Article  MathSciNet  Google Scholar 

  9. Yousef, M., et al.: Classification and biomarker identification using gene network modules and support vector machines. BMC Bioinformatics 10(1), 337 (2009)

    Article  Google Scholar 

  10. Qiu, P., Wang, Z.J., Liu, K.J.R.: Genomic processing for cancer classification and prediction - Abroad review of the recent advances in model-based genomoric and proteomic signal processing for cancer detection. IEEE Transaction on Signal Processing Magazine 24(1), 100–110 (2007)

    Article  Google Scholar 

  11. Zeng, X.-Q., et al.: Dimension reduction with redundant gene elimination for tumor classification. BMC Bioinformatics 9(suppl. 6), 8 (2008)

    Article  Google Scholar 

  12. Khosravi-Far, R.: Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16, 3923–3933 (1996)

    Article  Google Scholar 

  13. Gatza, M.L., et al.: A pathway-based classification of human breast cancer. Proceedings of the National Academy of Sciences 107(15), 6994–6999 (2010)

    Article  Google Scholar 

  14. Huang, E., et al.: Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat. Genet. 34(2), 226–230 (2003)

    Article  MathSciNet  Google Scholar 

  15. Tomfohr, J., Lu, J., Kepler, T.: Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics 6(1), 225 (2005)

    Article  Google Scholar 

  16. West, M., et al.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. U S A 98(20), 11462–11467 (2001)

    Article  Google Scholar 

  17. Segal, E., et al.: From signatures to models: understanding cancer using microar-rays. Nat. Genet. 37, S38–S45 (2005)

    Article  Google Scholar 

  18. Tlsty, T.: Cancer: Whispering sweet somethings. Nature 453(7195), 604–605 (2008)

    Article  Google Scholar 

  19. Lee, E., et al.: Inferring Pathway Activity toward Precise Disease Classification. PLoS Comput. Biol. 4(11), e1000217 (2008)

    Article  Google Scholar 

  20. Rapaport, F., et al.: Classification of microarray data using gene networks. BMC Bioinformatics 8(1), 35 (2007)

    Article  Google Scholar 

  21. Basso, K., et al.: Reverse engineering of regulatory networks in human B cells. Nature Genetics 37(4), 382–390 (2005)

    Article  Google Scholar 

  22. Calvano, S.E., et al.: A network-based analysis of systemic inflammation in hu-mans. Nature 437(7061), 1032–1037 (2005)

    Article  Google Scholar 

  23. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  24. Du, K.-L., Swamy, M.N.S.: Neural networks in a soft-computing framework. Springer-Verlag London Limited, London (2006)

    Google Scholar 

  25. Myers, R.H., Montgomery, D.C., Vining, G.G.: Generalized Linear Models, with Applications in Engineering and the Sciences. John Wiley & Sons, Chichester (2002)

    MATH  Google Scholar 

  26. McLachlan, G., Do, K.A., Ambroise, C.: Analyzing microarray gene expres-sion data. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  27. Kanehisa, M., et al.: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38(suppl. 1), 355–360 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, HQ., Xie, XP., Zheng, CH. (2012). A Pathway-Based Classification Method That Can Improve Microarray-Based Colorectal Cancer Diagnosis. In: Huang, DS., Gan, Y., Premaratne, P., Han, K. (eds) Bio-Inspired Computing and Applications. ICIC 2011. Lecture Notes in Computer Science(), vol 6840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24553-4_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24553-4_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24552-7

  • Online ISBN: 978-3-642-24553-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics