Abstract
We devise a theoretical foundation of directed rewriting, a term rewriting strategy for logics of partial functions, inspired by term rewriting in the Rodin platform. We prove that directed rewriting is sound and show how to supply new rewrite rules in a soundness preserving fashion. In the context of Rodin, we show that directed rewriting makes a significant number of conditional rewrite rules unconditional. Our work not only allows us to point out a number of concrete ways of improving directed rewriting in Rodin, but also has applications in other logics of partial functions. Additionally, we give a semantics for the logic of Event-B.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abrial, J.R.: Modeling in Event-B, Cambridge (2010)
Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466 (2010)
Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory. Kluwer, Dordrecht (2002)
Barringer, H., Cheng, J.H., Jones, C.B.: A logic covering undefinedness in program proofs. Acta Inf. 21, 251–269 (1984)
Butler, M., Maamria, I.: Mathematical extension in Event-B through the Rodin theory component (2010), http://deploy-eprints.ecs.soton.ac.uk/251
Darvas, Á., Mehta, F., Rudich, A.: Efficient well-definedness checking. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 100–115. Springer, Heidelberg (2008)
Dawson, J.E.: Simulating term-rewriting in LPF and in display logic. In: Supplementary Proc. of TPHOLs, pp. 47–62. Australian National University (1998)
Gordon, M.J.C., Melham, T.F.: Introduction to HOL, Cambridge (1993)
Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators, Cambridge (2008)
Jones, C.B., Middelburg, C.A.: A typed logic of partial functions reconstructed classically. Acta Inf. 31(5), 399–430 (1994)
Maamria, I., Butler, M.: Rewriting and well-definedness within a proof system. In: PAR. EPTCS, vol. 43, pp. 49–64 (2010)
Mehta, F.: A practical approach to partiality – A proof based approach. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 238–257. Springer, Heidelberg (2008)
Metayer, C., Voisin, L.: The Event-B mathematical language (2009), http://deploy-eprints.ecs.soton.ac.uk/11
Nipkow, T.: Term rewriting and beyond - theorem proving in isabelle. Formal Asp. Comput. 1(4), 320–338 (1989)
Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
Owe, O.: Partial logics reconsidered: A conservative approach. Formal Asp. Comput. 5(3), 208–223 (1993)
Owre, S., Shankar, N.: The formal semantics of PVS (1999), http://pvs.csl.sri.com/papers/csl-97-2/csl-97-2.ps
Paulson, L.C.: Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge (1987)
Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reasoning 5(3), 363–397 (1989)
Schmalz, M.: The logic of Event-B (2011), ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/698.pdf
Schmalz, M.: Term rewriting in logics of partial functions (2011), ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/732.pdf
Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS prover guide (2001), http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
Silva, R., Butler, M.: Supporting reuse of Event-B developments through generic instantiation. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 466–484. Springer, Heidelberg (2009)
Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmalz, M. (2011). Term Rewriting in Logics of Partial Functions. In: Qin, S., Qiu, Z. (eds) Formal Methods and Software Engineering. ICFEM 2011. Lecture Notes in Computer Science, vol 6991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24559-6_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-24559-6_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24558-9
Online ISBN: 978-3-642-24559-6
eBook Packages: Computer ScienceComputer Science (R0)