Skip to main content

Part of the book series: Lecture Notes in Computer Science ((THIPEAC,volume 6760))

Abstract

The issue logic of a superscalar processor consumes a large amount of static and dynamic energy. Furthermore, its power density makes it a hot-spot requiring expensive cooling systems and additional packaging. This paper presents a novel approach to energy reduction that uses compiler analysis communicated to the hardware, allowing the processor to dynamically resize the issue queue, fitting it to the available ILP without slowing down the critical path. Limiting the entries available reduces the quantity of instructions dispatched, leading to energy savings in the banked issue queue without adversely affecting performance.

Compared with a recently proposed hardware scheme, our approach is faster, simpler and saves more energy. A simplistic scheme achieves 31% dynamic and 33% static energy savings in the issue queue with a 7.2% performance loss. Using more sophisticated compiler analysis we then show that the performance loss can be reduced to less than 0.6% with 24% dynamic and 30% static energy savings and an EDD product of 0.96, outperforming two current state-of-the-art hardware approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folegnani, D., González, A.: Energy-effective issue logic. In: ISCA-28 (2001)

    Google Scholar 

  2. Emer, J.: Ev8: The post-ultimate alpha. In: Keynote at PACT (2001)

    Google Scholar 

  3. Buyuktosunoglu, A., Schuster, S., Brooks, D., Bose, P., Cook, P., Albonesi, D.H.: An adaptive issue queue for reduced power at high performance. In: Falsafi, B., VijayKumar, T.N. (eds.) PACS 2000. LNCS, vol. 2008, p. 25. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Abella, J., González, A.: Power-aware adaptive issue queue and register file. In: Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI), vol. 2913, pp. 34–43. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Bahar, R.I., Manne, S.: Power and energy reduction via pipeline balancing. In: ISCA-28 (2001)

    Google Scholar 

  6. Maro, R., Bai, Y., Bahar, R.I.: Dynamically reconfiguring processor resources to reduce power consumption in high-performance processors. In: Falsafi, B., VijayKumar, T.N. (eds.) PACS 2000. LNCS, vol. 2008, p. 97. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Manne, S., Klauser, A., Grunwald, D.: Pipeline gating: Speculation control for energy reduction. In: ISCA-25 (1998)

    Google Scholar 

  8. Buyuktosunoglu, A., Karkhanis, T., Albonesi, D.H., Bose, P.: Energy efficient co-adaptive instruction fetch and issue. In: Falsafi, B., VijayKumar, T.N. (eds.) PACS 2000. LNCS, vol. 2008. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Canal, R., González, A.: Reducing the complexity of the issue logic. In: ICS-15 (2001)

    Google Scholar 

  10. Huang, M., Renau, J., Torrellas, J.: Energy-efficient hybrid wakeup logic. In: ISLPED (2002)

    Google Scholar 

  11. Önder, S., Gupta, R.: Superscalar execution with dynamic data forwarding. In: PACT (1998)

    Google Scholar 

  12. Palacharla, S., Jouppi, N.P., Smith, J.E.: Complexity-effective superscalar processors. In: ISCA-24 (1997)

    Google Scholar 

  13. Abella, J., González, A.: Low-complexity distributed issue queue. In: HPCA-10 (2004)

    Google Scholar 

  14. Ernst, D., Hamel, A., Austin, T.: Cyclone: A broadcast-free dynamic instruction scheduler with selective replay. In: ISCA-30 (2003)

    Google Scholar 

  15. Hu, J.S., Vijaykrishnan, N., Irwin, M.J.: Exploring wakeup-free instruction scheduling. In: HPCA-10 (2004)

    Google Scholar 

  16. Lee, C., Lee, J.K., Hwang, T., Tsai, S.-C.: Compiler optimization on instruction scheduling for low power. In: ISSS-13 (2000)

    Google Scholar 

  17. Lorenz, M., Leupers, R., Marwedel, P., Dräger, T., Fettweis, G.: Low-energy DSP code generation using a genetic algorithm. In: ICCD-19 (2001)

    Google Scholar 

  18. Zhang, W., Vijaykrishnan, N., Kandemir, M., Irwin, M.J., Duarte, D., Tsai, Y.-F.: Exploiting VLIW schedule slacks for dynamic and leakage energy reduction. In: MICRO-34 (2001)

    Google Scholar 

  19. Toburen, M.C., Conte, T.M., Reilly, M.: Instruction scheduling for low power dissipation in high performance microprocessors. Technical report, North Carolina State University (1998)

    Google Scholar 

  20. Magklis, G., Scott, M.L., Semeraro, G., Albonesi, D.H., Dropsho, S.: Profile-based dynamic voltage and frequency scaling for a multiple clock domain microprocessor. In: ISCA-30 (2003)

    Google Scholar 

  21. Bellas, N., Hajj, I., Polychronopoulos, C., Stamoulis, G.: Energy and performance improvements in microprocessor design using a loop cache. In: ICCD-17 (1999)

    Google Scholar 

  22. Hsu, C.-H., Kremer, U., Hsiao, M.: Compiler-directed dynamic voltage/frequency scheduling for energy reduction in microprocessors. In: ISLPED (2001)

    Google Scholar 

  23. Jones, T.M., O’Boyle, M.F.P., Abella, J., González, A., Ergin, O.: Compiler directed early register release. In: PACT (2005)

    Google Scholar 

  24. Lo, J.L., et al.: Software-directed register deallocation for simultaneous multithreaded processors. IEEE TPDS 10(9) (1999)

    Google Scholar 

  25. Jones, T.M., O’Boyle, M.F.P., Abella, J., González, A.: Software directed issue queue power reduction. In: HPCA-11 (2005)

    Google Scholar 

  26. Tullsen, D.M., Calder, B.: Computing along the critical path. Technical report, University of California, San Diego (1998)

    Google Scholar 

  27. Fields, B., Rubin, S., Bodík, R.: Focusing processor policies via critical-path prediction. In: ISCA-28 (2001)

    Google Scholar 

  28. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power analysis and optimizations. In: ISCA-27 (2000)

    Google Scholar 

  29. Burger, D., Austin, T.: The simplescalar tool set, version 2.0. Technical Report TR1342, University of Wisconsin-Madison (1997)

    Google Scholar 

  30. Smith, M.D., Holloway, G.: The Machine-SUIF documentation set (2000), http://www.eecs.harvard.edu/machsuif/software/software.html

  31. The Stanford SUIF Compiler Group: The suif compiler infrastructure, http://suif.stanford.edu/

  32. The Standard Performance Evaluation Corporation (SPEC): CPU 2000 (2000), http://www.spec.org/cpu2000/

  33. Abella, J., González, A.: Power-aware adaptive instruction queue and rename buffers. Technical Report UPC-DAC-2002-31, UPC (2002)

    Google Scholar 

  34. Aygün, K., Hill, M.J., Eilert, K., Radhakrishnan, K., Levin, A.: Power delivery for high-performance microprocessors. Intel Technology Journal 9(4) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, T.M., O’Boyle, M.F.P., Abella, J., González, A. (2011). Compiler Directed Issue Queue Energy Reduction. In: Stenström, P. (eds) Transactions on High-Performance Embedded Architectures and Compilers IV. Lecture Notes in Computer Science, vol 6760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24568-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24568-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24567-1

  • Online ISBN: 978-3-642-24568-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics