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Abstract

Relative compression, where a set of similar strings are compressed
with respect to a reference string, is a very effective method of compress-
ing DNA datasets containing multiple similar sequences. Relative com-
pression is fast to perform and also supports rapid random access to the
underlying data. The main difficulty of relative compression is in selecting
an appropriate reference sequence. In this paper, we explore using the dic-
tionary of repeats generated by Comrad, Re-pair and Dna-x algorithms
as reference sequences for relative compression. We show this technique
allows better compression and supports random access just as well. The
technique also allows more general repetitive datasets to be compressed
using relative compression.

1 Introduction

Rapid advancements in the field of high-throughput sequencing have led to
a large number of whole genome DNA sequencing projects. Some of these
projects take advantage of the improved sequencing speeds and costs, to obtain
genomes of species that are unsequenced to date; for example the Genome 10K
project (www.genome10k.org). Others focus on resequencing, where individual
genomes from a given species are sequenced to understand variation between
individuals. Examples are the 1000 Genomes project (www.1000genomes.org)
for humans and the 1001 Genomes project (www.1001genomes.org) for the plant
Arabidopsis thaliana. The assembled sequences from these projects can range
from terabytes to petabytes in size. Therefore, algorithms and data structures
to efficiently store, access and search these large datasets are necessary. Some
progress has already been made [3, 7, 11, 17, 12], but significant challenges
remain.

DNA sequences may contain repeated substrings within a sequence, how-
ever, in a database of sequences, the most significant repeats occur between
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sequences, usually those of the same or similar species. To help manage large
genomic databases, compression algorithms that capture and efficiently encode
this repeated information are employed. Compression algorithms specific to
DNA sequences have been around for some time [1, 4, 5, 6, 9, 10, 19]. How-
ever, most existing algorithms are unsuitable for compressing large datasets of
multiple sequences. More recently, algorithms that compress large repetitive
datasets, that also support random access and search on the compressed se-
quences, known as self-indexes, have emerged. Some of these algorithms are
specific to DNA compression and support random access queries [13, 14]. Oth-
ers can compress general datasets and also implement search queries on the
compressed sequences [11, 17].

One of the most effective ways to compress a repetitive dataset containing
multiple sequences from the same or very similar species, or sequences serving
the same biological functions, is to compress each sequence with respect to a
chosen reference sequence [4, 14, 17]. The need for such a compression method
for DNA sequences was first realised by Grumbach and Tahi [9]. XM, a statisti-
cal algorithm that implements this feature, can also generate probabilities for
the level of similarity between the reference sequence and the sequence being
compressed [4]. Christley, et al. proposed a solution to store just the variations
of each human genome with respect to the reference genome [7] and a similar
approach is taken by Brandon, et al. [3]. Mäkinen, et al. introduce more general
methods to compress highly repetitive collections which also support searching
in the compressed data [17].

The Rlz method, which is used in this paper, represents each sequence
as an LZ77 parsing [20] with respect to a reference sequence chosen from the
dataset [14]. Recently Grabowski and Deorowicz engineered Rlz to improve
runtime and compression performance [8].

Relative compression algorithms like RLZ produce good compression results
because the reference sequence acts as a static “dictionary” that includes most
of the repeats present in the dataset being compressed. Compression speed is
fast because the sequences can be compressed in a single pass over the collection,
once an index on the reference sequence has been built. The static reference
also makes random access fast, and easy to support. The main drawback is the
difficulty of selecting an appropriate reference sequence. Selecting a reference
sequence from a dataset containing only individual genomes from the same
strain of the same species is simple, as any sequence will act as a good reference
sequence. However this will not be effective for datasets containing sequences
from different species, or from different strains of the same species.

Grabowski and Deorowicz [8] attempt to address this issue by adjusting the
composition of the reference sequence during compression. When substrings
of a certain minimum length, which do not occur in the reference sequence,
are encountered, they are appended to the reference sequence, so that later
occurrences of those substrings can be encoded as references. Results in [8] show
that such a mechanism can provide a slight improvement to compression with no
effects on the compression or decompression times. However, this method over-
compensates and adds more substrings to the reference sequence than necessary.
We compare our results with those of Grabowski and Deorowicz in Section 4.
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Figure 1: The change in the compressed size of the S. cerevisiae dataset when
the reference sequence is changed. The y-axis contains the compressed size,
measured in Megabytes and the x-axis contains the reference sequence used.

Our contribution: In this paper we explore the artificial construction of ref-
erence sequences from the phrases built by popular dictionary compressors. We
find that artifically constructed reference sequences allow superior compression,
while retaining the principle advatange of relative compression: fast random
access to the collection.

2 Reference Sequence Selection

Before we explore ways to generate an appropriate reference sequence, we first
analyse the effect on compression when “good” and “bad” reference sequences
are used. As an example, we use the Rlz algorithm to compress the S. cere-
visiae dataset containing 39 yeast genomes from different strains. The dataset
was compressed 39 times, with a different sequence being used as a reference
each time. Figure 1 shows that the reference sequence chosen can impact com-
pression significantly. For instance, choosing the sequence DBVPG6765 results in
a compressed size of 16.65 MB for the S. cerevisiae dataset, while choosing the
sequence UWOPS05 227 2 results in 24.42 MB. The experimental results of Rlz
in [14] uses the reference genome REF for the S. cerevisiae species. Using REF,
a compressed size of 17.89 MB was achieved, not far from the best result of
16.65 MB. This example illustrates that a more principled approach to selecting
a reference sequence is necessary.

The näive way to select the best reference sequence from a dataset is to
follow the approach taken to generate Figure 1; compress the dataset many
times, each time using a different sequence as the reference sequence, then select
the sequence that gives the best compression as the reference sequence. In this
manner, DBVPG6765 is chosen as the reference sequence for the S. cerevisiae
dataset. This technique is feasible for small datasets but is ultimately not
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Figure 2: The position components of the first 100 aligning factors for each
sequence in the S. cerevisiae dataset. Only the factors that start at positions in
the range of 24000-34000 are visible. The x-axis is the position on the reference
sequence and the y-axis is the sequence names for sequences in the dataset.

scalable.
Moreover, a single reference sequence still may not be representative of the

repetitions present in the whole dataset. A sequence may be highly similar
to a few other sequences in the dataset but quite different from others. In
other words, the sequences may form clusters. This is plausible for datasets
containing genomes from various strains of a species. To test this hypothesis,
we used the factors that are generated by Rlz that form alignments to the
reference sequence (LISS factors that encode the segments of DNA that are not
mutations [15]). We graphed the position component of these aligning factors for
the S. cerevisiae dataset, when sequence REF is used as the reference. If the set
of aligning factors are the same across two sequences, then those two sequences
align to the reference sequence in the same way, hence the two sequences are
similar.

The aligning factors for each sequence in the S. cerevisiae dataset for the
position range 24,000-34,000 of the reference sequence, are illustrated in Fig-
ure 2. The graph highlights clusters of similar sequences. Most sequences have
factors that start at the same position, especially those in the top half of the
graph. The latter half of the graph has clusters of sequences that have similar
factor positions. As an example, YPS606 and YPS128 seem to align to the ref-
erence sequence in the same way, and so do the sequences UWOPS03 461 4 and
UWOPS05 227 2.

An alternative to using multiple reference sequences is to use a single refer-
ence sequence that includes the significant repeats in the whole dataset. The
substrings that are shared among the sequences within clusters can be used
to create a reference sequence. Dictionary compression algorithms find the re-
peated substrings of the dataset being compressed and the dictionary stores
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these repeats. Hence, a dictionary compression algorithm that detects global
repetitions can be used to generate a dictionary whose entries can then be con-
catenated to construct a reference sequence. We experiment with this idea next.

3 Reference Sequence Construction

We choose three dictionary compression algorithms to generate reference se-
quences for the two yeast datasets; Re-pair [16], a well-known dictionary com-
pression algorithm, Comrad [13], similar to Re-pair but tailored for DNA
compression, and Dna-x [18], a DNA-specific implementation of the algorithm
by Bentley and McIlroy [2]. We first compress our test datasets with Re-pair,
Comrad and Dna-x, and then use the dictionary of repeats as a reference se-
quence for relative compression. Below we explain each algorithm briefly and
the process used to generate the reference sequence from the dictionary.

Re-pair

The Re-pair algorithm [16] operates in multiple iterations. In the first iteration,
a count of all the distinct pairs of symbols in the input sequence are recorded.
Then the most frequent symbol pair is replaced by a new symbol, and the
counts are updated to reflect the replacement. In this manner, the algorithm
substitutes the symbol pair with the highest count at each iteration, until there
are no symbol pairs left with a count of more than one. The new symbols
generated by the algorithm are identified as ‘non-terminals’, while the symbols in
the original input are identified as ‘terminals’. The algorithm outputs the input
sequence with all its repeated substrings replaced by non-terminal symbols, and
a dictionary of rules that map all non-terminals to the symbol pairs that they
replaced. The dictionary is hierarchical, since during later iterations, rules of
the form B ← CD or of the form B ← cD or B ← Cd are generated, where
upper-case symbols are non-terminals and lower-case symbols are terminals.
The non-terminals C and D in turn may also represent other non-terminals and
so on.

The dictionary of rules generated by Re-pair contains the repeated sub-
strings of the input sequence. The right hand sides of the rules can be expanded
recursively to obtain the repeated substrings, which can then be concatenated
to create a reference sequence. It’s not necessary to add all of the expanded
rules to the reference sequence. Some of the rules lower in the hierarchy have
already been incorporated into the repeated substrings of rules higher in the
hierarchy that refer to these rules, so it is redundant to add these to the ref-
erence sequence. For example, expanding rule Z in the set of rules Z ← XY ,
X ← aA, Y ← CD, would result in rules X, Y , A, C and D being expanded.
Once Z is expanded, it is redundant to individualy expand X, Y , A, C and D.
To implement this, we use a bit vector that is the length of the total number of
rules. To begin with, all the bits are set to zero. When a rule Y appears on the
right hand side of another rule Z, then the bit for rule Y is set to 1 to indicate
that when it is Y s turn to get expanded later, it can be skipped.

The non-terminals generated by Re-pair are identified using unique integers.
The higher the non-terminal number, the later the rule was generated and the
higher up in the hierarchy the rule is likely to be. So starting from the highest
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numbered rule to the lowest numbered rule, rule Z is expanded if and only if
Z has not been expanded by a previous rule, as indicated by the bit vector. If
rule Z is expanded, then the resulting substring is appended to the reference
sequence. This continues until all of the rules are considered for expansion. The
concatenation of the expanded substrings forms the reference sequence.

Comrad

Similar to Re-pair, Comrad [13] is a dictionary compression algorithm that de-
tects repeated substrings in the input, and encodes them efficiently to achieve
compression. Comrad also operates in multiple iterations, however, it is a
DNA-specific disk-based algorithm designed to compress large DNA datasets.
Instead of replacing pairs of frequent symbols, Comrad replaces repeated sub-
strings of longer lengths to reduce the number of iterations.

The first iteration of Comrad counts distinct L length substrings and the
repeated substrings from most frequent to least frequent are replaced with non-
terminals and a dictionary is formed. The input sequence now consists of
a combination of terminals and non-terminals. In subsequent iterations, the
counts of distinct substrings that satisfy a certain set of patterns is recorded
(see [13]), and again substrings from most frequent to least are replaced with
non-terminals. The iterations continue until there are no substrings of the above
form remaining with at least a count of F (only substrings with frequency F
are eligible for replacement). The algorithm outputs the input sequence with
repeated substrings replaced by non-terminals, and like Re-pair, a dictionary
containing the non-terminals mapping to the substrings they replace. As with
the Re-pair dictionary, we expand non-terminals and append them to create a
reference sequence.

Dna-x

Unlike Re-pair and Comrad, Dna-x is a single pass dictionary compression
algorithm. As the input is read, the fingerprint of every B-th substring of length
B is stored in a hash table. To encode the next substring, all overlapping B-mers
in the so far unencoded part of the input are searched for in the hash table until
there is a match. The hash table gives the positions of the earlier occurrences
of the B-mer. Each of these occurrences is checked to find the longest possible
match. Then the prefix until the matching substring, followed by the reference
for the matching substring is encoded. Searching and encoding continues un-
til no more symbols remain to be encoded. The longest matching substrings
encoded by the algorithm are the repeated substrings we use to construct the
reference sequence. We modified the implementation of Dna-x by Manzini and
Rastero to only output the concatenation of the longest matching substrings
detected by the algorithm. We use this output as the reference sequence.

4 Experimental Results

To test the performance of the reference construction method, we use Rlz as the
relative compressor. We use three test datasets containing repetitive genomes:
39 strains of S. cerevisiae and 36 strains of the S. paradoxus species of yeast, and

6



33 strains of E. coli bacteria. We ran Re-pair, Comrad and Dna-x on all three
datasets. For Re-pair, we used the default parameters, which does not place
any restrictions on the number or length of repeats that can be detected. For
Comrad, we used a starting substring length L of 16 and a threshold frequency
F of 2. For Dna-x we set the substring length B to 16 to be consistent with
Comrad. The repeated substrings resulting from the dictionaries were used to
generate the reference sequence as described above.

Compression results are in Table 1. The first section contains the results
for compressing with Rlz using the original reference sequence. The number
of megabases (including the reference sequence) and the 0-order entropy of the
dataset are in the first row. The second and third row contains the compression
results from using the reference sequences available in the dataset with the
RLZ-std and RLZ-opt (with the full set of optimisations), respectively. The
results show that RLZ-opt achieves better compression compared to RLZ-std.

The second section of Table 1 contains results for using the Comrad gen-
erated reference sequence. The two rows contain results for using the standard
implementation of Rlz (RLZ-std-C) and the optimised Rlz with look-ahead
and short factor encoding enabled (RLZ-opt-C)1, respectively. The S. cere-
visiae and S. paradoxus datasets compress better using the Comrad generated
reference sequence. The biggest improvement (a factor of two) is for E. coli.
The original reference sequence was the K12 strain from the dataset, since the
species does not have a reference genome. Evidently K12 is not a sequence that
represents the dataset well and the Comrad generated reference sequence is a
much better representation.

The third section of Table 1 contains the results for the Re-pair gener-
ated reference sequences, which are very similar to the Comrad results. The
compression results improved for all three datasets with the most significant
improvements being for E. coli. Overall, using the Re-pair generated refer-
ence sequences led to slightly better compressed sizes than using the Comrad
generated reference sequences.

The Dna-x generated reference sequences are not as promising. We found
Dna-x generated large reference sequences, as some of the repeats it output
were redundant. For example, the reference sequences for S. cerevisiae are
124.46 Mbases, 127.95 Mbases and 439.27 Mbases for Re-pair, Comrad and
Dna-x, respectively. Filtering such duplicate repeats is difficult as there are no
non-terminal numbers to identify multiple occurrences of the same repeat.

Next we show that using a reference sequence containing repeats from the
whole dataset is better than using a single sequence from the dataset as a
reference. As in Section 2, for all three datasets, we ran Rlz-opt multiple times,
with each sequence from the dataset being used as a reference at each iteration,
to select a single sequence from each dataset that achieves the best compression
result when used as a reference. The best compression results achieved were
9.33 MB, 13.23 MB and 18.69 MB for S. cerevisiae using the reference genome,
S. paradoxus using the Z1 strain and E. coli using the Sakai strain, respectively.
Comparing these results to those in the second and third sections of Table 1
shows that even if the sequence that gives the best compressed size is chosen as

1LISS factor encoding was not used as the reference is not a sequence from the dataset
and so there is no reason to expect factor positions to be predictable. For completeness, we
compressed with the LISS option on and the compression results were worse than standard
Rlz.
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the reference sequence for a dataset, the compression results are still worse than
the results that could be achieved by using a Comrad or Re-pair generated
reference sequence. This confirms that a single sequence is unlikely to capture
all the repeats in a dataset of similar sequences and it is worth constructing
a reference sequence that captures all the significant repeats of the dataset to
achieve better compression results.

Table 2 shows compression and decompression times. Obviously the com-
pression time increases significantly when using a generated reference sequence
as the reference must now be generated. Also generated references tend to be
longer and so more time is needed to construct suffix and LCP arrays used to
perform the Rlz parsing, and to compress the reference sequence with 7zip.
This is particularly the case for Dna-x. Still, performance for all methods
remains at an acceptable level: the two largest datasets, can be compressed
in approximately 20 minutes. More importantly, decompression times are not
affected at all.

Table 3 shows compression results for Rlcsa, Lz-end, Comrad, XM and
Re-pair algorithms being used to compress the three test datasets. The results
clearly show that using Rlz with the Comrad or Re-pair generated dictionar-
ies achieve much better compression than even the best results in Table 3.

While Re-pair generated reference sequences seem to compress the datasets
a little better than those of Comrad, resource requirements of the algorithms
should be taken into account. Both Comrad and Re-pair have comparable
runtimes (Re-pair required a little over half the time of Comrad, see Table 2).
However, the main memory usage of Re-pair is much higher, with S. cerevisiae
and S. paradoxus using approximatly 12 Gb and 11 Gb, respectively. On the
other hand, Comrad only requires 277 Mb and 554 Mb for S. cerevisiae and
S. paradoxus, respectively. Dna-x has the lowest resource usage, but a better
process needs to be followed to extract the necessary repeats from the dictionary
to get a better quality reference sequence.

We next experiment with data sets which do not contain a specific reference.
These were a Hemoglobin dataset containing 15,199 DNA sequences of proteins
that are associated with Hemoglobin, an Influenza dataset containing 78,041
sequences of various strains of the Influenza virus and a Mitochondria dataset
containing 1,521 mitochondrial DNA sequences from various species. Reference
sequences were generated for the datasets using Comrad, Re-pair and Dna-x.
The results are presented in Table 4.

The first section of Table 4 contains the performance of Rlz when the first
sequence in the dataset is chosen to be the reference. We only used standard
Rlz, since the reference sequences chosen were arbitrary so none of the Rlz
optimisations will be an advantage to the compression. The compression re-
sults for Rlz are worse than on previous datasets where a specific reference is
available.

The results in the second section of the table are for using Comrad gener-
ated reference sequences. Compression clearly improves for all three datasets.
The most significant improvement is for the Influenza dataset, followed by the
Hemoglobin dataset. The Mitochondria dataset did not compress very well but
compression still improves.

Compression also improved significantly for all datasets by using a Re-pair
generated reference. The Influenza dataset had the most significant improve-
ment, followed by Hemoglobin. The Mitochondria dataset still does not com-
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Dataset S. cerevisiae S. paradoxus E. coli
Size Ent. Size Ent. Size Ent.

(Mbytes) (bpb) (Mbytes) (bpb) (Mbytes) (bpb)

Original 485.87 2.18 429.27 2.12 164.90 2.00
Rlz-std 17.89 0.29 23.38 0.44 24.27 1.18
Rlz-opt 9.33 0.15 13.44 0.25 19.30 0.94

Rlz-std-C 8.20 0.14 9.64 0.18 8.70 0.42
Rlz-opt-C 7.99 0.13 9.08 0.17 8.07 0.39

Rlz-std-R 7.78 0.13 9.10 0.17 8.21 0.40
Rlz-opt-R 7.64 0.13 8.67 0.16 7.72 0.37

Rlz-std-D 9.80 0.16 13.38 0.25 11.06 0.54
Rlz-opt-D 9.64 0.16 13.01 0.24 10.57 0.51

Table 1: Compression results for using Comrad, Re-pair and Dna-x gener-
ated reference sequences. The columns are, the identifiers for Rlz version used
and algorithm used to generate the reference sequence, compressed size of the
dataset in Megabytes (original dataset size in Megabases) and average number
of bits used per base when compressed, respectively. The sections are for com-
pression results of Rlz when using, Comrad, Re-pair and Dna-x generated
reference sequences, respectively. In the first section, RLZ-opt includes all the
optimisations. In the last two sections, RLZ-opt only includes looking ahead
and short factor encoding.

press well. The fourth section of the table contains the results of using the
Dna-x generated reference. The results have improved compared to using the
original reference sequence, but gains are less than with the other two algo-
rithms.

According to Table 4, if there is enough repetitions in the dataset, it is fea-
sible to generate a reference sequence using either Re-pair or Comrad, or any
other dictionary compression algorithm, that can be used by Rlz to compress
any arbitrary repetitive dataset. There is no significant difference between using
a Comrad generated reference sequence over a Re-pair generated one, however
current implementations of Re-pair are less scalable than Comrad. Table 5
shows the compression and decompression times.

Finally, we compare the new results for S. cerevisiae and S. paradoxus to
those obtained by Grabowski and Deorowicz [8]. The results they achieve with-
out the improved reference sequence are 7.18 Mbytes and 9.62 Mbytes, and
with the improved reference sequence are 6.94 Mbytes and 9.01 Mbytes for
S. cerevisiae and S. paradoxus, respectively. Our best results are 7.64 Mbyte
for S. cerevisiae and 8.67 Mbyte for S. paradoxus, using Re-pair, which are
comparable. It may be possible to combine the techniques to acheive even bet-
ter results.

5 Concluding Remarks

Relative compression is a powerful technique for compressing collections of re-
lated genomes, which are now becoming commonplace. In this paper we have
shown that these genomic collections can contain clusters of sequences which are
more highly related than others. We have also shown that impressive gains in
compression can be acheived by exploiting these clusters. Our specific approach
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Dataset S. cerevisiae S. paradoxus E. coli
Comp. Dec. Comp. Dec. Comp. Dec.
(sec) (sec) (sec) (sec) (sec) (sec)

RLZ-std 143 9 182 6 125 3
RLZ-opt 233 8 241 6 140 3

RLZ-std-C 1561 4 1619 4 588 2
RLZ-opt-C 1783 4 1832 3 658 2

RLZ-std-R 1170 4 1134 4 455 2
RLZ-opt-R 1482 4 1353 4 499 2

RLZ-std-D 2272 8 1787 7 618 4
RLZ-opt-D 2901 7 2492 7 843 4

Table 2: Compression and decompression times for Comrad, Re-pair and
Dna-x generated reference sequences. The columns are: the algorithm used and
the time taken to compress and decompress measured in seconds, respectively.
Compression times include the time taken to generate the reference sequences,
where necessary.

Dataset S. cerevisiae S. paradoxus E. coli
Size Ent. Size Ent. Size Ent.

(Mbytes) (bpb) (Mbytes) (bpb) (Mbytes) (bpb)

Original 485.87 2.18 429.27 2.12 164.90 2.00
Rlcsa 41.39 0.57 47.35 0.88 34.94 1.67
Lz-end 42.52 0.70 57.18 1.07 55.25 2.68
Comrad 15.29 0.25 18.33 0.34 13.44 0.65
XM 74.53 1.26 13.17 0.25 8.82 0.43
Re-pair 8.85 0.15 11.75 0.22 11.89 0.58

Table 3: Compression results for the yeast and E. coli datasets using other
compression algorithms. The first row is the original size for all datasets (size
in megabases), the remaining rows are the compression performance of Rlcsa,
Lz-end, Comrad, XM and Re-pair algorithms. The two columns per dataset
show the size in Mbytes and the 0-order entropy (in bits per base).

has been to detect repetitions across the dataset and build an artificial “ref-
erence sequence”, relative to which the sequence is subsequently compressed.
This method retains the principle advantage of relative compression: fast ran-
dom access. The drawback is slower compression time, as time must now be
spent finding repeats with which to generate the reference. Future work will
attempt to address this problem. We also believe it may be fruitful to apply
clustering algorithms to related genomes to isolate strains.
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