Abstract
In this paper we generalize the principles of possibilistic mean value, variance, covariance and correlation of fuzzy numbers to a more general class of fuzzy subsets of the real line: to quasi fuzzy numbers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems 122, 315–326 (2001); doi:10.1016/S0165-0114(00)00043-9
Carlsson, C., Fullér, R.: Fuzzy Reasoning in Decision Making and Optimization. Studies in Fuzziness and Soft Computing Series, vol. 82. Springer, Heidelberg (2002)
Carlsson, C., Fullér, R., Majlender, P.: On possibilistic correlation. Fuzzy Sets and Systems 155, 425–445 (2005); doi:10.1016/j.fss.2005.04.014
Chanas, S., Nowakowski, M.: Single value simulation of fuzzy variable. Fuzzy Sets and Systems 25, 43–57 (1988); doi:10.1016/0165-0114(88)90098-X
Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets and Systems 24, 279–300 (1987); doi:10.1016/0165-0114(87)90028-5
Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)
Dubois, D.: Possibility theory and statistical reasoning. Computational Statistics & Data Analysis 51, 47–69 (2006); doi:10.1016/j.csda.2006.04.015
Fullér, R., Majlender, P.: On weighted possibilistic mean and variance of fuzzy quantitives. Fuzzy Sets and Systems 136, 363–374 (2003); doi:10.1016/S0165-0114(02)00216-6
Fullér, R., Majlender, P.: On interactive fuzzy quantitives. Fuzzy Sets and Systems 143, 355–369 (2004); doi:10.1016/S0165-0114(03)00180-5
Fullér, R., Mezei, J., Várlaki, P.: An improved index of interactivity for fuzzy numbers. Fuzzy Sets and Systems (to appear); doi:10.1016/j.fss.2010.06.001
Goetschel, R., Voxman, W.: Elementary Fuzzy Calculus. Fuzzy Sets and Systems 18, 31–43 (1986); doi:10.1016/0165-0114(86)90026-6
Larsen, P.M.: Industrial applications of fuzzy logic control. International Journal of Man–Machine Studies 12, 3–10 (1980), doi:10.1016/S0020-7373(80)80050-2
Mamdani, E.H.: Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man–Machine Studies 8(6), 669–678 (1976), doi:10.1016/S0020-7373(76)80028-4
Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Information Sciences 24, 143–161 (1981); doi:10.1016/0020-0255(81)90017-7
Yoshida, Y., Yasuda, M., Nakagami, J.-I., Kurano, M.: A new evaluation of mean value for fuzzy numbers and its application to American put option under uncertainty. Fuzzy Sets and Systems 157, 2614–2626 (2006)
Zadeh, L.A.: Concept of a linguistic variable and its application to approximate reasoning, I, II, III. Information Sciences 8, 199–249, 301–357 (1975); 9, 43–80 (1975)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Carlsson, C., Fullér, R., Mezei, J. (2012). A Quantitative View on Quasi Fuzzy Numbers. In: Trillas, E., Bonissone, P., Magdalena, L., Kacprzyk, J. (eds) Combining Experimentation and Theory. Studies in Fuzziness and Soft Computing, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24666-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-24666-1_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24665-4
Online ISBN: 978-3-642-24666-1
eBook Packages: EngineeringEngineering (R0)