Abstract
According to the relative position among the pixels of sparse image, we proposed the Gray Scale Potential of image. By taking the example of the binary images, this paper highlighted the definition of gray scale potential and the extraction of gray scale potential. Then we pointed out that the gray scale potential was an intrinsic feature of image. As for binary image, it reflects the relative distances of pixels to a baseline or to a reference point, and if the image is gray image, it reflects not only the distances but also the gray level feature. The gray scale potential has obvious advantage in representing the sparse image, because it can reduce the computational work and storage. Even two-dimensional image can be simplified to one-dimensional curve. Finally, some experimental data were given to illustrate the concept of gray scale potential. It shows that the gray scale potential of image is a steady feature and can be used in object recognition.
A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (No. 10C0945), Hunan Provincial Natural Science Foundation of China (Grant NO.07JJ3129), Program for Excellent Talents in Hunan Normal University(No ET61008), The National Science Foundation of China (Grant NO. 60973153).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liu, H., Zhang, S.F., Zhang, Y.X.: Infrared Imaging Fuze. Aero Weaponry 36, 12–15 (2005)
Wen, S., Yang, J.P., Liu, J., et al.: A New Texture Analysis Approach Based on Statistics of Texture Primitive’s Gray Pattern. Acta Electronica Sinica 28(4), 73–75 (2000)
Ge, J.G., Zhu, Z.Q., He, D.F., Chen, L.G.: A Vision-based Algorithm for Seam Detection in A PAW Process for Large-diameter Stainless Steel Pipes. The International Journal of Advanced Manufacturing Technology, 9–10, 1006–1011 (2005)
Duan, Y., Hua, J., Qin, H.: Interactive Shape Modeling Using Lagrangian Surface Flow. The Visual Computer 21(5), 279–288 (2005)
Goldenshluger, V.S.: On the Shape-From-moments Problem and Recovering Edges from Noisy Radon Data. Probability Theory and Related Fields 128(1), 123–140 (2004)
Belozerskii, L.A., Oreshkina, L.V.: Estimation of the Iinformative Content of Histograms of Satellite Images inThe Recognition of Changes in Local Objects. Pattern Recognition and Image Analysis 20(1), 65–72 (2010)
Viitaniemi, V., Laaksonen, J.: Representing Images with χ2 Distance Based Histograms of SIFT Descriptors. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 694–703. Springer, Heidelberg (2009)
Li, P.C., Cheng, J., Yuan, R.F., Zhao, W.V.: Robust 3D Marker Localization Using Multi-spectrum Sequences. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 529–537. Springer, Heidelberg (2009)
Cheong, M., Loke, K.-S.: Textile Recognition Using Tchebichef Moments of Co-occurrence Matrices. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 1017–1024. Springer, Heidelberg (2008)
Xu, P.Q., Xu, G.X., Tang, X.H., Yao, S.: A Visual Seam Tracking System for Robotic Arc Welding. The International Journal of Advanced Manufacturing Technology 37(1-2), 70–75 (2008)
Wu, X.J., Yang, J.Y., Wang, S.T., Liu, T.M.: A Study on a New Method of Feature Extraction. Journal of Image and Graphics 9(2), 129–133 (2004)
Askar, Chen, Y., Jia, Z.H.: A Probabilistic Weighted Summation Projection Technique for Multidimensional Signal Detection. Aeta Electronica Sinica 33(7), 1331–1333 (2005)
Olshausen, B.A., Field, D.J.: Emergence of Simple-Cell Receptive Field Properties by Learning A Sparse Code for Natural Images. Nature 381, 607–609 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tang, WS., Jiang, SH., Wang, SL. (2011). Gray Scale Potential Theory of Sparse Image. In: Huang, DS., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing. ICIC 2011. Lecture Notes in Computer Science, vol 6838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24728-6_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-24728-6_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24727-9
Online ISBN: 978-3-642-24728-6
eBook Packages: Computer ScienceComputer Science (R0)