Skip to main content

Gray Scale Potential Theory of Sparse Image

  • Conference paper
Advanced Intelligent Computing (ICIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6838))

Included in the following conference series:

  • 2976 Accesses

Abstract

According to the relative position among the pixels of sparse image, we proposed the Gray Scale Potential of image. By taking the example of the binary images, this paper highlighted the definition of gray scale potential and the extraction of gray scale potential. Then we pointed out that the gray scale potential was an intrinsic feature of image. As for binary image, it reflects the relative distances of pixels to a baseline or to a reference point, and if the image is gray image, it reflects not only the distances but also the gray level feature. The gray scale potential has obvious advantage in representing the sparse image, because it can reduce the computational work and storage. Even two-dimensional image can be simplified to one-dimensional curve. Finally, some experimental data were given to illustrate the concept of gray scale potential. It shows that the gray scale potential of image is a steady feature and can be used in object recognition.

A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (No. 10C0945), Hunan Provincial Natural Science Foundation of China (Grant NO.07JJ3129), Program for Excellent Talents in Hunan Normal University(No ET61008), The National Science Foundation of China (Grant NO. 60973153).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, H., Zhang, S.F., Zhang, Y.X.: Infrared Imaging Fuze. Aero Weaponry 36, 12–15 (2005)

    Google Scholar 

  2. Wen, S., Yang, J.P., Liu, J., et al.: A New Texture Analysis Approach Based on Statistics of Texture Primitive’s Gray Pattern. Acta Electronica Sinica 28(4), 73–75 (2000)

    Google Scholar 

  3. Ge, J.G., Zhu, Z.Q., He, D.F., Chen, L.G.: A Vision-based Algorithm for Seam Detection in A PAW Process for Large-diameter Stainless Steel Pipes. The International Journal of Advanced Manufacturing Technology, 9–10, 1006–1011 (2005)

    Google Scholar 

  4. Duan, Y., Hua, J., Qin, H.: Interactive Shape Modeling Using Lagrangian Surface Flow. The Visual Computer 21(5), 279–288 (2005)

    Article  Google Scholar 

  5. Goldenshluger, V.S.: On the Shape-From-moments Problem and Recovering Edges from Noisy Radon Data. Probability Theory and Related Fields 128(1), 123–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belozerskii, L.A., Oreshkina, L.V.: Estimation of the Iinformative Content of Histograms of Satellite Images inThe Recognition of Changes in Local Objects. Pattern Recognition and Image Analysis 20(1), 65–72 (2010)

    Article  Google Scholar 

  7. Viitaniemi, V., Laaksonen, J.: Representing Images with χ2 Distance Based Histograms of SIFT Descriptors. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 694–703. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Li, P.C., Cheng, J., Yuan, R.F., Zhao, W.V.: Robust 3D Marker Localization Using Multi-spectrum Sequences. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 529–537. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Cheong, M., Loke, K.-S.: Textile Recognition Using Tchebichef Moments of Co-occurrence Matrices. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 1017–1024. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Xu, P.Q., Xu, G.X., Tang, X.H., Yao, S.: A Visual Seam Tracking System for Robotic Arc Welding. The International Journal of Advanced Manufacturing Technology 37(1-2), 70–75 (2008)

    Article  Google Scholar 

  11. Wu, X.J., Yang, J.Y., Wang, S.T., Liu, T.M.: A Study on a New Method of Feature Extraction. Journal of Image and Graphics 9(2), 129–133 (2004)

    Article  Google Scholar 

  12. Askar, Chen, Y., Jia, Z.H.: A Probabilistic Weighted Summation Projection Technique for Multidimensional Signal Detection. Aeta Electronica Sinica 33(7), 1331–1333 (2005)

    Google Scholar 

  13. Olshausen, B.A., Field, D.J.: Emergence of Simple-Cell Receptive Field Properties by Learning A Sparse Code for Natural Images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Yong Gan Vitoantonio Bevilacqua Juan Carlos Figueroa

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, WS., Jiang, SH., Wang, SL. (2011). Gray Scale Potential Theory of Sparse Image. In: Huang, DS., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing. ICIC 2011. Lecture Notes in Computer Science, vol 6838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24728-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24728-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24727-9

  • Online ISBN: 978-3-642-24728-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics