Summary
For a given function, we consider a problem of minimizing the P 1 interpolation error on a set of triangulations with a fixed number of triangles. The minimization problem is reformulated as a problem of generating a mesh which is quasi-uniform in a specially designed metric. For functions with indefinite Hessian, we show existence of a family of metrics with highly diverse properties. The family may include both anisotropic and isotropic metrics. A developed theory is verified with numerical examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agouzal, A., Lipnikov, K., Vassilevski, Y.: Adaptive generation of quasi-optimal tetrahedral meshes. East-West J. Numer. Math. 7, 223–244 (1999)
Agouzal, A., Lipnikov, K., Vassilevski, Y.: Hessian-free metric-based mesh adaptation via geometry of interpolation error. Comp. Math. Math. Phys. 50, 124–138 (2010)
Agouzal, A., Vassilevski, Y.: Minimization of gradient errors of piecewise linear interpolation on simplicial meshes. Comp. Meth. Appl. Mech. Engnr. 199, 2195–2203 (2010)
Agouzal, A., Lipnikov, K., Vassilevski, Y.: Edge-based a posteriori error estimators for generating quasi-optimal simplicial meshes. Math. Model. Nat. Phenom. 5, 91–96 (2010)
Agouzal, A., Lipnikov, K., Vassilevski, Y.: On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes. Math. Comput. Simul. (in Press, 2011)
Borouchaki, H., Hecht, F., Frey, P.J.: Mesh gradation control. Inter. J. Numer. Meth. Engrg. 43, 1143–1165 (1998)
Buscaglia, G.C., Dari, D.A.: Anisotropic mesh optimization and its application in adaptivity. Int. J. Numer. Meth. Eng. 40, 4119–4136 (1997)
Chen, L., Sun, P., Xu, J.: Optimal anisotropic meshes for minimizing interpolation errors in L p-norm. Mathematics of Computation 76, 179–204 (2007)
Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland (1978)
Coupez, T.: Generation de maillage et adaptation de maillage par optimisation locale. Revue Europeenne Des Elements Finis 49, 403–423 (2000) (in French)
D’Azevedo, E.: Optimal triangular mesh generation by coordinate transformation. SIAM J. Sci. Stat. Comput. 12, 755–786 (1991)
Farrell, P.E., Maddison, J.R.: Conservative interpolation between volume meshes by local Galerkin projection. Comput. Methods Appl. Mech. Engrg. 200, 89–100 (2011)
Fortin, M., Vallet, M.-G., Dompierre, J., Bourgault, Y., Habashi, W.G.: Anisotropic mesh adaptation: theory, validation and applications Computational Fluid dynamics, pp. 174–180. John Wiley & Sons Ltd (1996)
George, P.L.: Automatic mesh generation: Applications to Finite Element Methods. John Wiley & Sons, Inc., New York (1991)
Huang, W., Sun, W.: Variational mesh adaptation II: Error estimates and monitor functions. J. Comput. Phys. 184, 619–648 (2003)
Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204, 633–665 (2005)
Loseille, A., Alauzet, F.: Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh framework. In: Clark, B.W. (ed.) Proc. of 18th Int. Meshing Roundtable, pp. 575–594 (2009)
Vassilevski, Y., Lipnikov, K.: Adaptive algorithm for generation of quasi-optimal meshes. Comp. Math. Math. Phys. 39, 1532–1551 (1999)
Vassilevski, Y., Agouzal, A.: An unified asymptotic analysis of interpolation errors for optimal meshes. Doklady Mathematics 72, 879–882 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Agouzal, A., Lipnikov, K., Vassilevski, Y. (2011). Families of Meshes Minimizing P 1 Interpolation Error. In: Quadros, W.R. (eds) Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24734-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-24734-7_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24733-0
Online ISBN: 978-3-642-24734-7
eBook Packages: EngineeringEngineering (R0)