Abstract
Our main motivation is the data access model and aggregation algorithm for middleware by R. Fagin, A. Lotem and M. Naor. They assume data attributes in a variety of repositories ordered by a grade of attribute values of objects. Moreover they assume the user has an aggregation function, which eventually qualifies an object to top-k answers.
In this paper we adopt a model of various users (there is no single ordering of objects in repositories and no single aggregation) with user preference learning algorithm on the middleware side. We present a new model of repository for simultaneous access by many users. The model is an extension of original model of Fagin, Lotem, Naor. Our solution is based on a model of fast learning of user preferences from his/her reactions. Experiments are focused on the performance of top-k algorithms (both TA and NRA) using data integration on an experimental prototype of our solution. Cache size, network latency and batch size were the features studied in experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proceedings of Twentieth ACM Symposium on Principles of Database Systems (PODS 2001), pp. 102–113. ACM, New York (2001)
Music Event Explorer - meex, http://swa.cefriel.it/meex
Eckhardt, A., Pokorný, J., Vojtáš, P.: A system recommending top-k objects for multiple users preferences. In: Martin, T. (ed.) 2007 IEEE Conference on Fuzzy Systems, London, United Kingdom. IEEE Fuzzy systems, pp. 1101–1106 (2007)
Chomicki, J.: Preference queries. Journal CoRR cs.DB/0207093 (2002)
Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases. In: VLDB 2003: Proceedings of the 29th International Conference on Very Large Data Bases, pp. 754–765. VLDB Endowment (2003)
Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries in image databases. In: Proceedings of the Twenty Sixth Very Large Databases (VLDB) Conference, Las Vegas, pp. 419–428 (2001)
Shmueli-Scheuer, M., Li, C., Mass, Y., Roitman, H., Schenkel, R., Weikum, G.: Best-effort top-k query processing under budgetary constraints. In: Proceedings of the 2009 IEEE International Conference on Data Engineering, pp. 928–939. IEEE Computer Society, Washington, DC, USA (2009)
Eckhardt, A., Pokorný, J., Vojtáš, P.: Integrating user and group preferences for top-k search. In: Tjoa, A.M., Wagner, R.R. (eds.) Database and Expert Systems Applications, Regensburg, Germany, pp. 317–322. IEEE, Los Alamitos (2007)
Eckhardt, A., Vojtáš, P.: Considering data-mining techniques in user preference learning. In: 2008 International Workshop on Web Information Retrieval Support Systems, pp. 33–36 (2008)
Gursky, P.: Towards better semantics in the multifeature querying. In: Snásel, V., Richta, K., Pokorný, J. (eds.) DATESO. CEUR Workshop Proceedings, vol. 176. CEUR-WS.org (2006)
Horničák, E.: Preference querying, indexes, optimization. In: Slovak. Master thesis, Charles University in Prague, Charles University, Czech Republic (2011)
Eckhardt, A.: Inductive models of user preferences for semantic web. In: Pokorný, J., Snášel, V., Richta, K. (eds.) DATESO 2007. CEUR Workshop Proceedings, vol. 235, pp. 108–119. Matfyz Press, Praha (2007)
Eckhardt, A., Vojtáš, P.: Combining various methods of automated user decision and preferences modelling. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds.) MDAI 2009. LNCS, vol. 5861, pp. 172–181. Springer, Heidelberg (2009)
Eckhardt, A., Vojtáš, P.: Learning user preferences for 2CP-regression for a recommender system. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 346–357. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Eckhardt, A., Horničák, E., Vojtáš, P. (2011). Evaluating Top-k Algorithms with Various Sources of Data and User Preferences. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 2011. Lecture Notes in Computer Science(), vol 7022. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24764-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-24764-4_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24763-7
Online ISBN: 978-3-642-24764-4
eBook Packages: Computer ScienceComputer Science (R0)