Skip to main content

Evaluating Top-k Algorithms with Various Sources of Data and User Preferences

  • Conference paper
Flexible Query Answering Systems (FQAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7022))

Included in the following conference series:

  • 645 Accesses

Abstract

Our main motivation is the data access model and aggregation algorithm for middleware by R. Fagin, A. Lotem and M. Naor. They assume data attributes in a variety of repositories ordered by a grade of attribute values of objects. Moreover they assume the user has an aggregation function, which eventually qualifies an object to top-k answers.

In this paper we adopt a model of various users (there is no single ordering of objects in repositories and no single aggregation) with user preference learning algorithm on the middleware side. We present a new model of repository for simultaneous access by many users. The model is an extension of original model of Fagin, Lotem, Naor. Our solution is based on a model of fast learning of user preferences from his/her reactions. Experiments are focused on the performance of top-k algorithms (both TA and NRA) using data integration on an experimental prototype of our solution. Cache size, network latency and batch size were the features studied in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proceedings of Twentieth ACM Symposium on Principles of Database Systems (PODS 2001), pp. 102–113. ACM, New York (2001)

    Chapter  Google Scholar 

  2. Music Event Explorer - meex, http://swa.cefriel.it/meex

  3. Eckhardt, A., Pokorný, J., Vojtáš, P.: A system recommending top-k objects for multiple users preferences. In: Martin, T. (ed.) 2007 IEEE Conference on Fuzzy Systems, London, United Kingdom. IEEE Fuzzy systems, pp. 1101–1106 (2007)

    Google Scholar 

  4. Chomicki, J.: Preference queries. Journal CoRR cs.DB/0207093 (2002)

    Google Scholar 

  5. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases. In: VLDB 2003: Proceedings of the 29th International Conference on Very Large Data Bases, pp. 754–765. VLDB Endowment (2003)

    Google Scholar 

  6. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries in image databases. In: Proceedings of the Twenty Sixth Very Large Databases (VLDB) Conference, Las Vegas, pp. 419–428 (2001)

    Google Scholar 

  7. Shmueli-Scheuer, M., Li, C., Mass, Y., Roitman, H., Schenkel, R., Weikum, G.: Best-effort top-k query processing under budgetary constraints. In: Proceedings of the 2009 IEEE International Conference on Data Engineering, pp. 928–939. IEEE Computer Society, Washington, DC, USA (2009)

    Chapter  Google Scholar 

  8. Eckhardt, A., Pokorný, J., Vojtáš, P.: Integrating user and group preferences for top-k search. In: Tjoa, A.M., Wagner, R.R. (eds.) Database and Expert Systems Applications, Regensburg, Germany, pp. 317–322. IEEE, Los Alamitos (2007)

    Google Scholar 

  9. Eckhardt, A., Vojtáš, P.: Considering data-mining techniques in user preference learning. In: 2008 International Workshop on Web Information Retrieval Support Systems, pp. 33–36 (2008)

    Google Scholar 

  10. Gursky, P.: Towards better semantics in the multifeature querying. In: Snásel, V., Richta, K., Pokorný, J. (eds.) DATESO. CEUR Workshop Proceedings, vol. 176. CEUR-WS.org (2006)

    Google Scholar 

  11. Horničák, E.: Preference querying, indexes, optimization. In: Slovak. Master thesis, Charles University in Prague, Charles University, Czech Republic (2011)

    Google Scholar 

  12. Eckhardt, A.: Inductive models of user preferences for semantic web. In: Pokorný, J., Snášel, V., Richta, K. (eds.) DATESO 2007. CEUR Workshop Proceedings, vol. 235, pp. 108–119. Matfyz Press, Praha (2007)

    Google Scholar 

  13. Eckhardt, A., Vojtáš, P.: Combining various methods of automated user decision and preferences modelling. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds.) MDAI 2009. LNCS, vol. 5861, pp. 172–181. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Eckhardt, A., Vojtáš, P.: Learning user preferences for 2CP-regression for a recommender system. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 346–357. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckhardt, A., Horničák, E., Vojtáš, P. (2011). Evaluating Top-k Algorithms with Various Sources of Data and User Preferences. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 2011. Lecture Notes in Computer Science(), vol 7022. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24764-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24764-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24763-7

  • Online ISBN: 978-3-642-24764-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics