Skip to main content

Factorizing Three-Way Ordinal Data Using Triadic Formal Concepts

  • Conference paper
Flexible Query Answering Systems (FQAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7022))

Included in the following conference series:

Abstract

The paper presents a new approach to factor analysis of three-way ordinal data, i.e. data described by a 3-dimensional matrix I with values in an ordered scale. The matrix describes a relationship between objects, attributes, and conditions. The problem consists in finding factors for I, i.e. finding a decomposition of I into three matrices, an object-factor matrix A, an attribute-factor matrix B, and a condition-factor matrix C, with the number of factors as small as possible. The difference from the decomposition-based methods of analysis of three-way data consists in the composition operator and the constraint on A, B, and C to be matrices with values in an ordered scale. We prove that optimal decompositions are achieved by using triadic concepts of I, developed within formal concept analysis, and provide results on natural transformations between the space of attributes and conditions and the space of factors. We present an illustrative example demonstrating the usefulness of finding factors and a greedy algorithm for computing decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belohlavek, R.: Optimal decomposition of matrices with entries from residuated lattices. J. Logic and Computation (to appear, preliminary version appeared in Proc. IEEE Intelligent Systems, pp. 15-2–15-7 (2008))

    Google Scholar 

  2. Belohlavek, R., Glodeanu, C.V., Vychodil, V.: Optimal factorization of three-way binary data using triadic concepts. (submitted, preliminary version appeared in Proc. IEEE GrC 2010, pp. 61–66 (2010))

    Google Scholar 

  3. Belohlavek, R., Osicka, P.: Triadic concept analysis of data with fuzzy attributes. In: Proc. 2010 IEEE International Conference on Granular Computing, San Jose, California, August 14–16, pp. 661–665 (2010)

    Google Scholar 

  4. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Computer and System Sci. 76(1), 3–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belohlavek, R., Vychodil, V.: Factor analysis of incidence data via novel decomposition of matrices. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS(LNAI), vol. 5548, pp. 83–97. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Cichocki, A., et al.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. J. Wiley, Chichester (2009)

    Book  Google Scholar 

  7. Cormen, T.H., et al.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  9. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  10. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS – An Algorithm for Mining Iceberg Tri-Lattices. In: ICDM 2006, pp. 907–911 (2006)

    Google Scholar 

  11. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  12. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kroonenberg, P.M.: Applied Multiway Data Analysis. J. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  14. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Experimental and Theoretical Articial Intelligence 14(2–3), 189–216 (2002)

    Article  MATH  Google Scholar 

  15. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–34. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Mickey, M.R., Mundle, P., Engelman, L.: Boolean factor analysis. In: Dixon, W.J. (ed.) BMDP Statistical Software Manual, vol. 2, pp. 849–860. University of California Press, Berkeley (1990)

    Google Scholar 

  17. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The Discrete Basis Problem. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 335–346. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Nau, D.S., Markowsky, G., Woodbury, M.A., Amos, D.B.: A Mathematical Analysis of Human Leukocyte Antigen Serology. Math. Biosciences 40, 243–270 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Outrata, J.: Preprocessing input data for machine learning by FCA. In: Kryszkiewicz, M., Obiedkov, S. (eds.) Proc. CLA 2010, vol. 672, pp. 187–198. University of Sevilla, CEUR WS (2010)

    Google Scholar 

  20. Outrata, J.: Boolean factor analysis for data preprocessing in machine learning. In: Draghici, S., et al. (eds.) Proc. ICMLA 2010, Intern. Conf. on Machine Learning and Applications, pp. 899–902. IEEE, Washington, DC (2010)

    Chapter  Google Scholar 

  21. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. J. Wiley, Chichester (2004)

    Book  Google Scholar 

  22. Stockmeyer, L.J.: The set basis problem is NP-complete. IBM Research Report RC5431, Yorktown Heights, NY (1975)

    Google Scholar 

  23. Tang, F., Tao, H.: Binary principal component analysis. In: Proc. British Machine Vision Conference 2006, pp. 377–386 (2006)

    Google Scholar 

  24. Tatti, N., Mielikäinen, T., Gionis, A., Mannila, H.: What is the dimension of your binary data? In: ICDM 2006, pp. 603–612 (2006)

    Google Scholar 

  25. Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belohlavek, R., Osička, P., Vychodil, V. (2011). Factorizing Three-Way Ordinal Data Using Triadic Formal Concepts. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 2011. Lecture Notes in Computer Science(), vol 7022. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24764-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24764-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24763-7

  • Online ISBN: 978-3-642-24764-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics