Skip to main content

Towards Artificial Evolution of Complex Behaviors Observed in Insect Colonies

  • Conference paper
Progress in Artificial Intelligence (EPIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7026))

Included in the following conference series:

Abstract

Studies on social insects have demonstrated that complex, adaptive and self-organized behavior can arise at the macroscopic level from relatively simple rules at the microscopic level. Several past studies in robotics and artificial life have focused on the evolution and understanding of the rules that give rise to a specific macroscopic behavior such as task allocation, communication or synchronization. In this study, we demonstrate how colonies of embodied agents can be evolved to display multiple complex macroscopic behaviors at the same time. In our evolutionary model, we incorporate key features present in many natural systems, namely energy consumption, birth, death and a long evaluation time. We use a generic foraging scenario in which agents spend energy while they move and they must periodically recharge in the nest to avoid death. New robots are added (born) when the colony has foraged a sufficient number of preys. We perform an analysis of the evolved behaviors and demonstrate that several colonies display multiple complex and scalable macroscopic behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ampatzis, C., Tuci, E., Trianni, V., Christensen, A.L., Dorigo, M.: Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots. Artificial Life 15(4), 465–484 (2009)

    Article  Google Scholar 

  2. Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collective behaviours. Artificial Life 9, 255–267 (2002)

    Article  Google Scholar 

  3. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior 1, 91–122 (1992)

    Article  Google Scholar 

  4. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  5. Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary conditions for the emergence of communication in robots. Current Biology 17(6), 514–519 (2007)

    Article  Google Scholar 

  6. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research 23(9), 939–954 (2004)

    Article  Google Scholar 

  7. Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410, 277–284 (2001)

    Article  Google Scholar 

  8. Krieger, M.J.B., Billeter, J.-B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406, 992–995 (2000)

    Article  Google Scholar 

  9. Labella, T.H., Dorigo, M., Deneubourg, J.-L.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems 1(1), 4–25 (2006)

    Article  Google Scholar 

  10. Liu, W., Winfield, A.F.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization: Emergent task allocation in a swarm of foraging robots. Adaptive Behavior 15(3), 289–305 (2007)

    Article  Google Scholar 

  11. Marocco, D., Nolfi, S.: Emergence of communication in teams of embodied and situated agents, in the evolution of language. In: Proceedings of the 6th Internation Conference on the Evolution of Language, pp. 198–205. World Scientific Publishing Ltd., Toh Tuck Link (2006)

    Google Scholar 

  12. Maynard-Smith, J., Szathmary, E.: The Major Transitions in Evolution. Oxford University Press, New York (1997)

    Google Scholar 

  13. Mazzapioda, M., Nolfi, S.: Synchronization and Gait Adaptation in Evolving Hexapod Robots. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 113–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. McClintock, M.K.: Menstrual synchrony and suppression. Nature 229(5282), 244–245 (1971)

    Article  Google Scholar 

  15. Mitri, S., Floreano, D., Keller, L.: Relatedness influences signal reliability in evolving robots. In: Proceedings of The Royal Society / Biological Sciences, vol. 278(1704), pp. 378–383 (2010)

    Google Scholar 

  16. Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., Barabási, A.L.: Self-organizing processes: The sound of many hands clapping. Nature 403(6772), 849–850 (2000)

    Article  Google Scholar 

  17. Nijmeijer, H., Rodriguez-Angeles, A.: Synchronization of mechanical systems. World Scientific Publishing Ltd., Toh Tuck Link (2003)

    Book  MATH  Google Scholar 

  18. Parker, L.E.: ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)

    Article  Google Scholar 

  19. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361(1811), 2321–2343 (2003)

    Article  MathSciNet  Google Scholar 

  20. Snedden, W.A., Greenfield, M.D., Jang, Y.: Mechanisms of selective attention in grasshopper choruses: who listens to whom? Behavioral Ecology & Sociobiology 43(1), 59–66 (1998)

    Article  Google Scholar 

  21. Trianni, V., Nolfi, S.: Self-organising sync in a robotic swarm. a dynamical system view. IEEE Transactions on Evolutionary Computation, 1–21 (2009)

    Google Scholar 

  22. Wilson, E.O.: Sociobiology: The New Synthesis. Belknap Press, Cambridge (1975)

    Google Scholar 

  23. Winfield, A.F.T.: Foraging Robots. In: Encyclopedia of Complexity and Systems Science, pp. 3682–3700. Springer, Berlin (2009)

    Chapter  Google Scholar 

  24. Wischmann, S., Pasemann, F.: The Emergence of Communication by Evolving Dynamical Systems. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 777–788. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duarte, M., Christensen, A.L., Oliveira, S. (2011). Towards Artificial Evolution of Complex Behaviors Observed in Insect Colonies. In: Antunes, L., Pinto, H.S. (eds) Progress in Artificial Intelligence. EPIA 2011. Lecture Notes in Computer Science(), vol 7026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24769-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24769-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24768-2

  • Online ISBN: 978-3-642-24769-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics