Abstract
We propose a multi-agent approach to the problem of exploring unknown environments that relies on providing the agents with a measure of interest for the viewpoints of the surrounding environment. Such measure of interest takes into account the expected decrease in uncertainty provided by acquiring the information of objects seen from a viewpoint and the novelty of the potential class label of those objects. This allows the agents to visit selectively the objects that populate the environment. This single agent exploration strategy is combined with a multi-agent exploration strategy relying on a brokering system that allows the coordination of the agent team according to the agents’s personal interest and their distance to the viewpoints. The advantages of these forms of selective attention, together with those of the collaborative multi-agent exploration strategy, are tested in several scenarios, comparing our approach against classical ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amat, J., Mantaras, R., Sierra, C.: Cooperative autonomous low-cost robots for exploring unknown environments. In: Khatib, O., Salisbury, K. (eds.) Proceedings of the 4th International Symposium on Experimental Robotics IV. LNCIS, pp. 40–49. Springer, Stanford (1997)
Anguelov, D., Biswas, R., Koller, D., Limketkai, B., Sanner, S., Thrun, S.: Learning hierarchical object maps of non-stationary environments with mobile robots. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence, pp. 10–17. Morgan Kaufmann Publishers, Inc., Alberta (2002)
Bresina, J., Dorais, G., Golden, K., Smith, D., Washington, R.: Autonomous rovers for human exploration of mars. In: Proceedings of the Mars Society Founding Convention. Boulder, Colorado (1999)
Burgard, W., Fox, D., Moors, M., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 476–481. IEEE Computer Society, San Francisco (2000)
Burgard, W., Moors, M., Schneider, F.: Collaborative exploration of unknown environments with teams of mobile robots. In: Beetz, M., Hertzberg, J., Ghallab, M., Pollack, M.E. (eds.) Dagstuhl Seminar 2001. LNCS (LNAI), vol. 2466, pp. 52–70. Springer, Heidelberg (2002)
Gupta, K.M., Aha, D.W., Moore, P.: Case-based collective inference for maritime object classification. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 434–449. Springer, Heidelberg (2009)
Hähnel, D., Burgard, W., Thrun, S.: Learning compact 3d models of indoor and outdoor environments with a mobile robot. Robotics and Autonomous Systems 44(1), 15–27 (2001)
Hähnel, D., Triebel, R., Burgard, W., Thrun, S.: Map building with mobile robots in dynamic environments. In: Proceedings of the International Conference on Robotics and Automation, pp. 1557–1563. IEEE Computer Society, Taipei (2003)
Lee, D.: The map-building and exploration strategies of a simple, sonar-equipped mobile robot; an experimental, quantitative evaluation. Phd, University College of London (1996)
Lee, D., Recce, M.: Quantitative evaluation of the exploration strategies of a mobile robot. International Journal of Robotics Research 16(4), 413–447 (1994)
Liu, Y., Emery, R., Chakrabarti, D., Burgard, W., Thrun, S.: Using em to learn 3d models of indoor environments with mobile robots. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 329–336. Morgan Kaufmann Publishers, Inc., Williams College (2001)
Macedo, L.: The Exploration of Unknown Environments by Affective Agents. Phd thesis, University of Coimbra (2007)
Macedo, L., Cardoso, A.: Exploration of unknown environments with motivational agents. In: Jennings, N., Tambe, M. (eds.) Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 328–335. IEEE Computer Society, New York (2004)
Macedo, L., Cardoso, A.: Using CBR in the exploration of unknown environments with an autonomous agent. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 272–286. Springer, Heidelberg (2004)
Moorehead, S., Simmons, R., Apostolopoulos, D., Whittaker, W.: Autonomous navigation field results of a planetary analog robot in antarctica. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space. Noordwijk, Holland (1999)
Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)
Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)
Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes, H.: Coordination for multi-robot exploration and mapping. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, Texas, USA, pp. 852–858 (2000)
Simmons, R., Krotkov, E., Chrisman, L., Cozman, F., Goodwin, R., Hebert, M., Katragadda, L., Koenig, S., Krishnaswamy, G., Shinoda, Y., Whittaker, W.: Experience with rover navigation for lunar-like terrains. In: IROS (1995)
Thrun, S.: Efficient exploration in reinforcement learning. Tech. Rep. CMU-CS-92-102, Carnegie Mellon University, Computer Science Department (1992)
Thrun, S.: The role of exploration in learning control. In: White, D., Sofge, D. (eds.) Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, pp. 527–559. Van Nostrand Reinhold, New York (1992)
Thrun, S.: Exploration and model building in mobile robot domains. In: Proceedings of the International Conference on Neural Networks, San Francisco, CA, pp. 175–180 (1993)
Thrun, S.: Exploration in active learning. In: Arbib, M. (ed.) Handbook of Brain Science and Neural Networks, pp. 381–384. MIT Press, Cambridge (1995)
Thrun, S.: Learning maps for indoor mobile robot navigation. Artificial Intelligence (1997)
Thrun, S.: Probabilistic algorithms in robotics. Tech. Rep. CMU-CS-00-126, School of Computer Science, Carnegie Mellon University (2000)
Thrun, S.: Robotic mapping: a survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, pp. 1–35. Morgan Kaufmann Publishers, Inc., San Francisco (2002)
Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 321–328 (2000)
Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hhnel, D., Montemerlo, M., Morris, A., Omohundro, Z., Reverte, C.: Autonomous exploration and mapping of abandoned mines. IEEE Robotics and Automation Magazine 11(4), 79–91 (2005)
Washington, R., Bresina, J., Smith, D., Anderson, C., Smith, T.: Autonomous rovers for mars exploration. In: Proceedings of the 1999 IEEE Aerospace Conference, Aspen, CO, USA (1999)
Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. Minneapolis, MN (1998)
Yamauchi, B., Schultz, A., Adams, W.: Integrating exploration and localization for mobile robots. Adaptive Systems 7(2), 217–230 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Macedo, L., Tavares, M., Gaspar, P., Cardoso, A. (2011). Uncertainty and Novelty-Based Selective Attention in the Collaborative Exploration of Unknown Environments. In: Antunes, L., Pinto, H.S. (eds) Progress in Artificial Intelligence. EPIA 2011. Lecture Notes in Computer Science(), vol 7026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24769-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-24769-9_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24768-2
Online ISBN: 978-3-642-24769-9
eBook Packages: Computer ScienceComputer Science (R0)