Skip to main content

Uncertainty and Novelty-Based Selective Attention in the Collaborative Exploration of Unknown Environments

  • Conference paper
Progress in Artificial Intelligence (EPIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7026))

Included in the following conference series:

  • 1528 Accesses

Abstract

We propose a multi-agent approach to the problem of exploring unknown environments that relies on providing the agents with a measure of interest for the viewpoints of the surrounding environment. Such measure of interest takes into account the expected decrease in uncertainty provided by acquiring the information of objects seen from a viewpoint and the novelty of the potential class label of those objects. This allows the agents to visit selectively the objects that populate the environment. This single agent exploration strategy is combined with a multi-agent exploration strategy relying on a brokering system that allows the coordination of the agent team according to the agents’s personal interest and their distance to the viewpoints. The advantages of these forms of selective attention, together with those of the collaborative multi-agent exploration strategy, are tested in several scenarios, comparing our approach against classical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amat, J., Mantaras, R., Sierra, C.: Cooperative autonomous low-cost robots for exploring unknown environments. In: Khatib, O., Salisbury, K. (eds.) Proceedings of the 4th International Symposium on Experimental Robotics IV. LNCIS, pp. 40–49. Springer, Stanford (1997)

    Google Scholar 

  2. Anguelov, D., Biswas, R., Koller, D., Limketkai, B., Sanner, S., Thrun, S.: Learning hierarchical object maps of non-stationary environments with mobile robots. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence, pp. 10–17. Morgan Kaufmann Publishers, Inc., Alberta (2002)

    Google Scholar 

  3. Bresina, J., Dorais, G., Golden, K., Smith, D., Washington, R.: Autonomous rovers for human exploration of mars. In: Proceedings of the Mars Society Founding Convention. Boulder, Colorado (1999)

    Google Scholar 

  4. Burgard, W., Fox, D., Moors, M., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 476–481. IEEE Computer Society, San Francisco (2000)

    Google Scholar 

  5. Burgard, W., Moors, M., Schneider, F.: Collaborative exploration of unknown environments with teams of mobile robots. In: Beetz, M., Hertzberg, J., Ghallab, M., Pollack, M.E. (eds.) Dagstuhl Seminar 2001. LNCS (LNAI), vol. 2466, pp. 52–70. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Gupta, K.M., Aha, D.W., Moore, P.: Case-based collective inference for maritime object classification. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 434–449. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Hähnel, D., Burgard, W., Thrun, S.: Learning compact 3d models of indoor and outdoor environments with a mobile robot. Robotics and Autonomous Systems 44(1), 15–27 (2001)

    Article  Google Scholar 

  8. Hähnel, D., Triebel, R., Burgard, W., Thrun, S.: Map building with mobile robots in dynamic environments. In: Proceedings of the International Conference on Robotics and Automation, pp. 1557–1563. IEEE Computer Society, Taipei (2003)

    Google Scholar 

  9. Lee, D.: The map-building and exploration strategies of a simple, sonar-equipped mobile robot; an experimental, quantitative evaluation. Phd, University College of London (1996)

    Google Scholar 

  10. Lee, D., Recce, M.: Quantitative evaluation of the exploration strategies of a mobile robot. International Journal of Robotics Research 16(4), 413–447 (1994)

    Article  Google Scholar 

  11. Liu, Y., Emery, R., Chakrabarti, D., Burgard, W., Thrun, S.: Using em to learn 3d models of indoor environments with mobile robots. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 329–336. Morgan Kaufmann Publishers, Inc., Williams College (2001)

    Google Scholar 

  12. Macedo, L.: The Exploration of Unknown Environments by Affective Agents. Phd thesis, University of Coimbra (2007)

    Google Scholar 

  13. Macedo, L., Cardoso, A.: Exploration of unknown environments with motivational agents. In: Jennings, N., Tambe, M. (eds.) Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 328–335. IEEE Computer Society, New York (2004)

    Google Scholar 

  14. Macedo, L., Cardoso, A.: Using CBR in the exploration of unknown environments with an autonomous agent. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 272–286. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Moorehead, S., Simmons, R., Apostolopoulos, D., Whittaker, W.: Autonomous navigation field results of a planetary analog robot in antarctica. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space. Noordwijk, Holland (1999)

    Google Scholar 

  16. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)

    Google Scholar 

  17. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes, H.: Coordination for multi-robot exploration and mapping. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, Texas, USA, pp. 852–858 (2000)

    Google Scholar 

  19. Simmons, R., Krotkov, E., Chrisman, L., Cozman, F., Goodwin, R., Hebert, M., Katragadda, L., Koenig, S., Krishnaswamy, G., Shinoda, Y., Whittaker, W.: Experience with rover navigation for lunar-like terrains. In: IROS (1995)

    Google Scholar 

  20. Thrun, S.: Efficient exploration in reinforcement learning. Tech. Rep. CMU-CS-92-102, Carnegie Mellon University, Computer Science Department (1992)

    Google Scholar 

  21. Thrun, S.: The role of exploration in learning control. In: White, D., Sofge, D. (eds.) Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, pp. 527–559. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  22. Thrun, S.: Exploration and model building in mobile robot domains. In: Proceedings of the International Conference on Neural Networks, San Francisco, CA, pp. 175–180 (1993)

    Google Scholar 

  23. Thrun, S.: Exploration in active learning. In: Arbib, M. (ed.) Handbook of Brain Science and Neural Networks, pp. 381–384. MIT Press, Cambridge (1995)

    Google Scholar 

  24. Thrun, S.: Learning maps for indoor mobile robot navigation. Artificial Intelligence (1997)

    Google Scholar 

  25. Thrun, S.: Probabilistic algorithms in robotics. Tech. Rep. CMU-CS-00-126, School of Computer Science, Carnegie Mellon University (2000)

    Google Scholar 

  26. Thrun, S.: Robotic mapping: a survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, pp. 1–35. Morgan Kaufmann Publishers, Inc., San Francisco (2002)

    Google Scholar 

  27. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 321–328 (2000)

    Google Scholar 

  28. Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hhnel, D., Montemerlo, M., Morris, A., Omohundro, Z., Reverte, C.: Autonomous exploration and mapping of abandoned mines. IEEE Robotics and Automation Magazine 11(4), 79–91 (2005)

    Article  Google Scholar 

  29. Washington, R., Bresina, J., Smith, D., Anderson, C., Smith, T.: Autonomous rovers for mars exploration. In: Proceedings of the 1999 IEEE Aerospace Conference, Aspen, CO, USA (1999)

    Google Scholar 

  30. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. Minneapolis, MN (1998)

    Chapter  Google Scholar 

  31. Yamauchi, B., Schultz, A., Adams, W.: Integrating exploration and localization for mobile robots. Adaptive Systems 7(2), 217–230 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Macedo, L., Tavares, M., Gaspar, P., Cardoso, A. (2011). Uncertainty and Novelty-Based Selective Attention in the Collaborative Exploration of Unknown Environments. In: Antunes, L., Pinto, H.S. (eds) Progress in Artificial Intelligence. EPIA 2011. Lecture Notes in Computer Science(), vol 7026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24769-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24769-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24768-2

  • Online ISBN: 978-3-642-24769-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics