Abstract
Framelets have been used successfully in various problems in image processing, including inpainting, impulse noise removal, super-resolution image restoration, etc. Segmentation is the process of identifying object outlines within images. There are quite a few efficient algorithms for segmentation that depend on the partial differential equation modeling. In this paper, we apply the framelet-based approach to identify tube-like structures such as blood vessels in medical images. Our method iteratively refines a region that encloses the possible boundary or surface of the vessels. In each iteration, we apply the framelet-based algorithm to denoise and smooth the possible boundary and sharpen the region. Numerical experiments of real 2D/3D images demonstrate that the proposed method is very efficient and outperforms other existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arivazhagan, S., Ganesan, L.: Texture segmentation using wavelet transform. Pattern Recognition Letters 24, 3197–3203 (2003)
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vision 28, 151–167 (2007)
Cai, J.F., Chan, R.H., Shen, L.X., Shen, Z.W.: Simultaneously inpainting in image and transformed domains. Numer. Math. 112, 509–533 (2009)
Cai, J.F., Chan, R.H., Shen, Z.W.: A framelet-based image inpainting algorithm. Appl. Comput. Harmon. Anal. 24, 131–149 (2008)
Cai, J.F., Osher, S., Shen, Z.W.: Split Bregman methods and frame based image restoration. Multiscale Modeling and Simulation 8, 337–369 (2009)
Candès, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Modeling and Simulation 5, 861–899 (2006)
Chan, R.H., Setzer, S., Steidl, G.: Inpainting by flexible Haar-wavelet shrinkage. SIAM J. Imaging Sci. 1, 273–293 (2008)
Chan, R.H., Chan, T.F., Shen, L.X., Shen, Z.W.: Wavelet algorithms for high-resolution image reconstruction. SIAM J. Sci. Comput. 24, 1408–1432 (2003)
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. Technical Report 54, UCLA (2004)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)
Daubechies, I.: Ten lectures on wavelets. Lecture Notes, vol. CBMS-NSF(61). SIAM, Philadelphia (1992)
Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2004)
Dong, B., Chien, A., Shen, Z.W.: Frame based segmentation for medical images. Technical Report 22, UCLA (2010)
Dong, B., Shen, Z.W.: MRA based wavelet frames and applications. IAS Lecture Notes Series, Summer Program on The Mathematics of Image Processing, Park City Mathematics Institute (2010)
Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41, 613–627 (1995)
Franchini, E., Morigi, S., Sgallari, F.: Segmentation of 3D tubular structures by a PDE-based anisotropic diffusion model. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 224–241. Springer, Heidelberg (2010)
Franchini, E., Morigi, S., Sgallari, F.: Composed segmentation of tubular structures by an anisotropic PDE model. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 75–86. Springer, Heidelberg (2009)
Gooya, A., Liao, H., et al.: A variational method for geometric regularization of vascular segmentation in medical images. IEEE Trans. Image Process. 17, 1295–1312 (2008)
Gonzales, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Englewood Cliffs (2008)
Hassan, H., Farag, A.A.: Cerebrovascular segmentation for MRA data using levels set. International Congress Series, vol. 1256, pp. 246–252 (2003)
Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Computing Surveys 36, 81–121 (2004)
Ron, A., Shen, Z.W.: Affine Systems in L2(Rd): The Analysis of the Analysis Operator. J. Funct. Anal. 148, 408–447 (1997)
Sandberg, B., Chan, T.F.: A logic framework for active contours on multi-channel images. J. Vis. Commun. Image R. 16, 333–358 (2005)
Scherl, H., et al.: Semi automatic level set segmentation and stenosis quantification of internal carotid artery in 3D CTA data sets. Medical Image Analysis 11, 21–34 (2007)
Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 4, 1549–1560 (1995)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cai, X., Chan, R.H., Morigi, S., Sgallari, F. (2012). Framelet-Based Algorithm for Segmentation of Tubular Structures. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-24785-9_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24784-2
Online ISBN: 978-3-642-24785-9
eBook Packages: Computer ScienceComputer Science (R0)