Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

While image scale spaces are well understood, it is undeniable that the regularisation parameter in variational optic flow methods serves a similar role as the scale parameter in scale space evolutions. However, no thorough analysis of this optic flow scale-space exists to date. Our paper closes this gap by interpreting variational optic flow methods as Whittaker-Tikhonov regularisations of the normal flow, evaluated in a constraint-specific norm. The transition from this regularisation framework to an optic flow evolution creates novel vector-valued scale-spaces that are not in divergence form and act in a highly anisotropic way. From a practical viewpoint, the deep structure in optic flow scale space allows the automatic selection of the most accurate scale by means of an optimal prediction principle. Moreover, we show that our general class of optic flow scale-spaces incorporates novel methods that outperform classical variational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abhau, J., Belhachmi, Z., Scherzer, O.: On a decomposition model for optical flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 126–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Technical Report MSR-TR-2009-179, Microsoft Research, Redmond, WA (December 2009)

    Google Scholar 

  4. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  5. Ben-Ari, R., Sochen, N.: A geometric framework and a new criterion in optical flow modeling. Journal of Mathematical Imaging and Vision 33, 178–194 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bertero, M., Poggio, T.A., Torre, V.: Ill-posed problems in early vision. Proceedings of the IEEE 76(8), 869–889 (1988)

    Article  Google Scholar 

  7. Fagerström, D.: Spatio-temporal scale-spaces. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 326–337. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Florack, L.: Image Structure. Computational Imaging and Vision, vol. 10. Kluwer, Dordrecht (1997)

    Google Scholar 

  9. Grewenig, S., Weickert, J., Bruhn, A.: From box filtering to fast explicit diffusion. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 533–542. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Guichard, F.: A morphological, affine, and Galilean invariant scale-space for movies. IEEE Transactions on Image Processing 7(3), 444–456 (1998)

    Article  Google Scholar 

  11. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  12. Iijima, T.: Theory of pattern recognition. In: Electronics and Communications in Japan, pp. 123–134 (November 1963) (in English)

    Google Scholar 

  13. Iijima, T., Genchi, H., Mori, K.: A theory of character recognition by pattern matching method. In: Proc. First International Joint Conference on Pattern Recognition, Washington, DC, pp. 50–56 (October 1973) (in English)

    Google Scholar 

  14. Krajsek, K., Mester, R.: A maximum likelihood estimator for choosing the regularization parameters in global optical flow methods. In: Proc. 2006 IEEE International Conference on Image Processing, Atlanta, GA, pp. 1081–1084 (2006)

    Google Scholar 

  15. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)

    Book  MATH  Google Scholar 

  16. Mrázek, P., Navara, M.: Selection of optimal stopping time for nonlinear diffusion filtering. International Journal of Computer Vision 52(2-3), 189–203 (2003)

    Article  Google Scholar 

  17. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 565–593 (1986)

    Article  Google Scholar 

  18. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. Journal of Mathematical Imaging and Vision 12(1), 43–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schnörr, C.: On functionals with greyvalue-controlled smoothness terms for determining optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10), 1074–1079 (1993)

    Article  Google Scholar 

  20. Sochen, N., Kimmel, R., Bruckstein, F.: Diffusions and confusions in signal and image processing. Journal of Mathematical Imaging and Vision 14(3), 195–210 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.): Gaussian Scale-Space Theory. Computational Imaging and Vision, vol. 8. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  22. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady 4, 1035–1038 (1963)

    MATH  Google Scholar 

  23. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  24. Whittaker, E.T.: A new method of graduation. Proceedings of the Edinburgh Mathematical Society 41, 65–75 (1923)

    Google Scholar 

  25. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. International Journal of Computer Vision 93(3), 368–388 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demetz, O., Weickert, J., Bruhn, A., Zimmer, H. (2012). Optic Flow Scale Space. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics