Skip to main content

Multiscale Weighted Ensemble Kalman Filter for Fluid Flow Estimation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

This paper proposes a novel multi-scale fluid flow data assimilation approach, which integrates and complements the advantages of a Bayesian sequential assimilation technique, the Weighted Ensemble Kalman filter (WEnKF) [12], and an improved multiscale stochastic formulation of the Lucas-Kanade (LK) estimator. The proposed scheme enables to enforce a physically plausible dynamical consistency of the estimated motion fields along the image sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Corpetti, T., Heas, P., Memin, E., Papadakis, N.: Pressure image asimilation for atmospheric motion estimation. Tellus 61A, 160–178 (2009)

    Article  Google Scholar 

  2. Corpetti, T., Heitz, D., Arroyo, G., Memin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Experiments in Fluids 40, 80–97 (2006)

    Article  Google Scholar 

  3. Corpetti, T., Memin, E.: Stochastic Models for Local Optical Flow Estimation. In: Bruckstein, A.M., et al. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 701–712. Springer, Heidelberg (2011)

    Google Scholar 

  4. Evensen, G.: Sequential data assimilation with a non linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5)(10), 143–162 (1994)

    Google Scholar 

  5. Evensen, G.: The ensemble Kalman filter, theoretical formulation and practical implementation. Ocean Dynamics 53(4), 343–367 (2003)

    Article  Google Scholar 

  6. Heas, P., Memin, E., Heitz, D., Mininni, P.: Bayesian selection of scaling laws for motion modeling in images. In: Proc. Int. Conf. Computer Vision (2009)

    Google Scholar 

  7. Heitz, D., Memin, E., Schnoerr, C.: Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. in Fluids 48(3), 369–393 (2010)

    Article  Google Scholar 

  8. Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic Engineering 82, 35–45 (1960)

    Article  Google Scholar 

  9. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereovision. In: Int. Joint Conf. on Artificial Intel. (IJCAI), pp. 674–679 (1981)

    Google Scholar 

  10. Oksendal, B.: Stochastic differential equations. Spinger, Heidelberg (1998)

    Book  MATH  Google Scholar 

  11. Papadakis, N., Memin, E.: An optimal control technique for fluid motion estimation. SIAM Journal on Imaging Sciences 1(4), 343–363 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Papadakis, N., Memin, E., Cuzol, A., Gengembre, N.: Data assimilation with the weighted ensemble kalman filter. Tellus-A 62(5), 673–697 (2010)

    Article  Google Scholar 

  13. Ruhnau, P., Kohlberger, T., Schnoerr, C., Nobach, H.: Variational optical flow estimation for particle image velocimetry. Exp. in Fluids 38, 21–32 (2005)

    Article  Google Scholar 

  14. Yuan, J., Schnoerr, C., Memin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Mathematical Imaging and Vision 28(1), 67–80 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gorthi, S., Beyou, S., Corpetti, T., Mémin, E. (2012). Multiscale Weighted Ensemble Kalman Filter for Fluid Flow Estimation. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics