Skip to main content

Identification of Nuclear Magnetic Resonance Signals via Gaussian Mixture Decomposition

  • Conference paper
Advances in Intelligent Data Analysis X (IDA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7014))

Included in the following conference series:

  • 1679 Accesses

Abstract

Nuclear Magnetic Resonance spectroscopy is a powerful technique for the determination of protein structures and has been supported by computers for decades. One important step during this process is the identification of resonances in the data. However, due to noise, overlapping effects and artifacts occuring during the measurements, many algorithms fail to identify resonances correctly. In this paper, we present a novel interpretation of the data as a sample drawn from a mixture of bivariate Gaussian distributions. Therefore, the identification of resonances can be reduced to a Gaussian mixture decomposition problem which is solved with the help of the Expectation-Maximization algorithm. A program in the Java programming language that exploits an implementation of this algorithm is described and tested on experimental data. Our results indicate that this approach offers valuable information such as an objective measure on the likelihood of the identified resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wüthrich, K.: NMR of Proteins and Nucleic Acids. John Wiley, New York (1986)

    Google Scholar 

  2. Williamson, M.P., Craven, C.J.: Automated protein structure calculation from NMR data. J. Biomol. NMR 43, 131–143 (2009)

    Article  Google Scholar 

  3. Koradi, R., Billeter, M., Engeli, M., Güntert, P., Wüthrich, K.: Automated Peak Picking and Peak Integration in Macromolecular NMR Spectra Using AUTOPSY. J. Magn. Reson. 135, 288–297 (1998)

    Article  Google Scholar 

  4. Alipanahi, B., Gao, X., Karakoc, E., Donaldson, L., Li, M.: PICKY: a novel SVD-based NMR spectra peak picking method. Bioinformatics 25, i268–i275 (2009)

    Article  Google Scholar 

  5. Carrara, E.A., Pagliari, F., Nicolini, C.: Neural Networks for the Peak-Picking of Nuclear Magnetic Resonance Spectra. Neural Networks 6, 1023–1032 (1993)

    Article  Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. Roy. Stat. Soc. B. Met. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  7. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. John Wiley & Sons, Chichester (1997)

    MATH  Google Scholar 

  8. Fraley, C., Raftery, A.E.: MCLUST Version 3 for R: Normal Mixture Modeling and Model-based Clustering. Technical report, University of Washington (2009)

    Google Scholar 

  9. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010) ISBN 3-900051-07-0

    Google Scholar 

  10. Hautaniemi, S., Edgren, H., Vesanen, P., Wolf, M., Järvinen, A.-K., Yli-Harja, O., Astola, J., Kallioniemi, O., Monni, O.: A novel strategy for microarray quality control using Bayesian networks. Bioinformatics 19, 2031–2038 (2003)

    Article  Google Scholar 

  11. Banfield, J.D., Raftery, A.E.: Model-Based Gaussian and Non-Gaussian Clustering. Biometrics 49, 803–821 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, H.X., Luo, B., Zhang, Q.B., Wei, S.: Estimation for the number of components in a mixture model using stepwise split-and-merge EM algorithm. Pattern Recogn. Lett. 25, 1799–1809 (2004)

    Article  Google Scholar 

  13. Pernkopf, F., Bouchaffra, D.: Genetic-Based EM Algorithm for Learning Gaussian Mixture Models. IEEE T. Pattern Anal. 27, 1344–1348 (2005)

    Article  Google Scholar 

  14. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231. AAAI Press, Menlo Park (1996)

    Google Scholar 

  15. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. McLachlan, G.J., Basford, K.E.: Mixture models: Inference and applications to clustering. Dekker, New York (1988)

    MATH  Google Scholar 

  17. Bartels, C., Xia, T.-H., Billeter, M., Güntert, P., Wüthrich, K.: The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1–10 (1995)

    Article  Google Scholar 

  18. Urbanek, S.: Rserve – A Fast Way to Provide R Functionality to Applications. In: Hornik, K., Leisch, F., Zeileis, A. (eds.) Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria (2003)

    Google Scholar 

  19. Graham, R.L.: An efficient algorithm for determining the convex hull of a planar set. Inform. Process. Lett. 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  20. Schwarz, G.: Estimating the Dimension of a Model. Ann. Stat. 6, 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wasmer, C., Zimmer, A., Sabaté, R., Soragni, A., Saupe, S.J., Ritter, C., Meier, B.H.: Structural similarity between the prion domain of HET-s and a homologue can explain amyloid cross-seeding in spite of limited sequence identity. J. Mol. Biol. 402, 311–325 (2010)

    Article  Google Scholar 

  22. Güntert, P., Dötsch, V., Wider, G., Wüthrich, K.: Processing of multi-dimensional NMR data with the new software PROSA. J. Biomol. NMR 2, 619–629 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krone, M., Klawonn, F., Lührs, T., Ritter, C. (2011). Identification of Nuclear Magnetic Resonance Signals via Gaussian Mixture Decomposition. In: Gama, J., Bradley, E., Hollmén, J. (eds) Advances in Intelligent Data Analysis X. IDA 2011. Lecture Notes in Computer Science, vol 7014. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24800-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24800-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24799-6

  • Online ISBN: 978-3-642-24800-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics