

J. Kotlarsky, L.P. Willcocks, and I. Oshri (Eds.): Global Sourcing 2011, LNBIP 91, pp. 133–152, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Getting Agile Methods to Work for Cordys Global
Software Product Development

Jos van Hillegersberg1, Gerwin Ligtenberg2, and Mehmet N. Aydin3

1 University of Twente
School of Management and Governance

P.O. Box 217, 7500 AE Enschede, The Netherlands
j.vanhillegersberg@utwente.nl

2 Cordys Research & Development, The Netherlands
gligtenberg@cordys.com

3 Department of Information Technologies,
Işık University, Turkey

mnaydin@isikun.edu.tr

Abstract. Getting agile methods to work in global software development is a
potentially rewarding but challenging task. Agile methods are relatively young
and still maturing. The application to globally distributed projects is in its early
stages. Various guidelines on how to apply and sometimes adapt agile methods
have been proposed. However, systematic literature reviews reveal that detailed
evaluative studies are scarce and limited to small and medium sized projects. This
study presents a framework that integrates best practices of adapting and applying
agile methods reported in the literature. The framework is applied to analyze the
experiences of global software product development company Cordys in a seven
year longitudinal case study. Both the framework and the experiences of Cordys
documented in this paper will be of value to other larger projects that aim to be
successful in applying agile in globally distributed projects.

Keywords: Global Software Development, Agile Methods, XP, Scrum, Global
Teams, Offshoring, Globally Distributed Software Engineering.

1 Introduction

1.1 The Rise of Agile Methods for Systems Development

Agile methods for software development were introduced around the beginning of the
new century. The increasing business need for fast creation of internet and mobile
applications was a key driver for the introduction of these light weight and nimble
development processes. Traditional waterfall based methods had often resulted in
large, bureaucratic and slow development processes. In many dramatic cases, sizeable
project teams had burned significant amounts of money merely creating documents
and reports rather than working software. In the rare event that working software was
produced, the customer and end user had often been forgotten in the process, resulting
in products that did not meet requirements and expectations. Already in the late 1980s
and 1990s, innovations in systems development methods focused on more dynamic,

134 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

adaptive and user centric ways of working. The Agilemanifesto.org, published in
2001, contains twelve principles that synthesize the ideas underlying agile methods.
These include welcoming changing requirements, close collaboration of business
people and developers, self-organizing teams, a focus on delivering working software
and face-to-face conversation as the preferred way to transfer knowledge.

Abrahamsson et al. [2], in their review of agile methods, characterize these as
incremental, cooperative, straightforward, and adaptive: “Incremental refers to small
software releases, with rapid development cycles. Cooperative refers to a close
customer and developer interaction. Straightforward implies that the method itself is
easy to learn and to modify and that it is sufficiently documented. Finally, adaptive
refers to the ability to make and react to last moment changes”. Well known examples
of agile methods include Scrum development Process [22],[23]. Extreme Programming
(XP) [4] and Feature-Driven Development (FDD) [18]. Scrum and XP are among the
most well known agile methods. They are often seen as complementary as XP provides
specific engineering techniques and Scrum essentially works as a wrapper for such
techniques [8],[10]. While agile methods have increased in popularity, they do not yet
provide integral support for systems development. Different agile methods cover
different phases of the software development life-cycle. Moreover, Project
management support by agile methods is limited and limited emphasis is put on how to
operate and tailor agile methods to specific organizations and situations [2],[3].

1.2 Agile Methods in Globally Distributed Development

Whether agile methods and distributed development can be combined to harvest the
benefits of both is a subject of much debate. It has been widely recognized that
geographical distance and the time zone and cultural differences associated with
global distribution have caused problems for globally distributed software teams in
achieving successful collaboration (e.g. see [15]). Agile methods use short iterations,
frequent builds, and continuous integration that all require very frequent
communication, coordination and trust. A theoretical analysis by Turk et al. [25]
predicts that several agile process principles, such as self-evaluation, frequent
customer and team face-to-face meetings, short time intervals between releases, focus
on code rather than documentation and team spirit seem to be impractical in a global
setting. The temporal, geographical and socio-cultural distance in distributed
development makes the application of agile methods a complex task [16]. Paasivaara
and Lassenius [16] summarize the key questions as:

In the global software development literature, communication is often seen
as the most challenging problem of distribution whereas the agile methods
basically rely on communication, preferably face-to-face communication,
instead of documentation. The application of agile principles to global
software development poses several questions regarding communication:
How could daily communication be arranged effectively? What kind of
communication practices and media are suitable for supporting different
agile practices? How could informal communication, that is important to
agile methods, be encouraged? How could the risk for misunderstandings,
e.g. regarding requirements, be minimized? How could trust be built and
retained between teams to ensure open communication?

 Getting Agile Methods to Work for Cordys Global Software Product Development 135

Based on a systematic literature review, Hossain et al. [11] conclude there is no clear
description or understanding of how the use of agile practices can reduce global
software development (GSD) risks and improve project communication, coordination
or collaboration processes. They further state that “current research provides limited
evidence of the effective use of agile practices in minimizing risks of global software
development processes”. Holmström [10] states that “the more common view is that
agile methods are not applicable for GSD”. Some authors report risks and limitations
when using agile methods in a globally distributed setting. Sarker and Sarker [21],
based on a case study of developing agility in a distributed IS development setting,
find that many of the guidelines or prescriptions for agile methods could not be used
effectively (and sustained) in distributed teams. The authors suggest that “agile
methods need suitable adaptation for effective adoption/use in a distributed ISD
setting”. Sakthivel [20] puts forward that agile methods are only suitable for small
scale offshore development projects. “Due to their high task dependencies and
required face-to-face interaction with users during their iterative analysis, design, and
trial stages, they are not suitable for mid- and large-size offshore projects”. Hossain et
al. [11] concludes based on a recent systematic literature review that: “we do not
know the risks of using Scrum in a GSD project with a large number of project
personnel, or an increased number of distributed sites”. Moreover, the risks when
using Scrum in GSD may vary according to project contextual factors.

Ramesh et al. [19] state that combining agile and distributed development
introduces five challenges. First, agile development relies more on informal
interactions than explicit documentation which poses a real challenge in achieving the
communication formality that may be needed to assure effective communication
between sites. Second, how can fixing quality requirements to guide the remote team
be balanced with the agile principle of ongoing customer developer discussions.
Third, what would be the appropriate balance between the formal process-oriented
control typically used in distributed development and the more people oriented
informal agile practices? Fourth, what is the appropriate level of formality in
developing contractual agreements in agile development? Fifth, how can team
cohesion be improved given the constraints of a distributed environment? Holmström
[10] concludes that what is needed is an increased understanding of the characteristics
of agile methods and how these can be applied to reduce the negative influence of
distance in GSD.

The experiences of using specific agile methods reported on in the literature are
scarce and mixed [26]. For example, based on a case study of a development team
located in Sydney and Malaysia, Hossain et al. [12] find that daily Stand-up meetings,
with the aid of various communication tools, help to build mutual understanding
among distributed project stakeholders. Sprint review meetings increased project
visibility and transparency and “Test Driven Development (TDD)” helped to maintain
a shared standard development view. Based on case studies of global projects at HP
and Intel, Holmström et al. [10] conclude that agile practices are valuable in reducing
some of the challenges of globally distributed development. In particular, XP and
Scrum practices were found useful for improving communication, coordination, and
control within GSD teams. However, Sarker and Sarker [21] find that daily Scrum

136 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

meetings are difficult to hold or organize in distributed settings where stakeholders are
(often) located in different time zones. Their case analysis further reveals that the use
of Scrum sprints (i.e., achieving short deadlines), and the maintenance of daily burn-
down charts and stringent monitoring rules can become difficult in a distributed
setting, because of a variety of unanticipated complexities associated with local
cultures, infrastructures of varying quality, and temporal differences. Sarkar and Sarkar
[21] find that the use of agile methods in some cases led to: “dysfunctional stress and
work-life balance challenges, with negative impact on morale and productivity”.

Paasivaara et al. [17] note that while there is increasing interest in applying agile
methods to global projects, there are only a few reported experiences on industrial
projects and even fewer case studies. This is confirmed by a recent systematic
literature review by Jalali and Wohlin [13] of peer reviewed conference papers or
journal articles published between 1999 and 2009. Most of the 77 papers identified
have appeared recently and a majority of the current literature is in the form of
experience reports, in which practitioners have reported their own experiences on a
particular issue and the method used to mitigate it. The majority of them have not
documented the characteristics of their empirical study and the context under which
the project was running. Only three out of the 77 papers were jointly written by
academics and practitioners. Jalali and Wohlin note that although experience reports
are useful, more evaluation and validation research is needed to establish foundations
for a more mature area. Moreover, they find that existing literature mainly consists of
reports on small to medium sized projects.

It is the objective of this study to address the open questions in how to apply agile
methods in a globally distributed software development project. As the above
discussion reveals, more evaluative studies are needed, especially to learn how agile
methods and practices should be implemented successfully in a global project.
Current literature is usually lacks longitudinal research. As we have studied the
continuous adaptation of agile methods in the global project at Cordys over a longer
time period, we can better document lessons learned compared to a single snap-shot
case study. Moreover, we focus on a large project where most reported experiences so
far were limited to small and medium sized projects..

1.3 Research Method

As many open questions exist in applying agile methods to large globally distributed
software development projects, this study adopts a longitudinal case study research
approach. Theory building is in its early stages and the evolution of agile methods and
the lack of knowledge on how to adopt them in GSD do make a qualitative case study
a suitable choice [7].

As we learned that Cordys was among the first companies that adopted agile
methods in a large global development project in 2004, we contacted them for
conducting a case study research. Cordys showed interest in sharing their experiences
in their journey and in collaborating with researchers in sharing knowledge. From the
early steps at Cordys with implementing agile methods more than six years ago till
today we have been exchanging experiences and ideas. We have conducted interviews
with Cordys management and developers in 2005, 2008, 2009 and 2011 to assess the

 Getting Agile Methods to Work for Cordys Global Software Product Development 137

status and adaptations to the agile processes. In the interview we had in November
2005 at Cordys with Hans de Visser, VP services and Steven ten Napel, VP
operations, the initial experiences with agile methods were discussed, including the
reasons to adopt agile methods and the implementation strategy. In 2008, a workshop
was held at the Cordys headquarters with several developers and project managers to
share the experiences and future plans. Annual presentations were given by Gerwin
Ligtenberg, program manager at Cordys, to us to discuss the ways the methods were
tailored and supported with tools to fit the global setting. In 2011 an additional
interview was held with Gerwin Ligtenberg in which he reflected on the key steps
taken and changes made to the teams, organization, methods and tools. By serving as
a second author of this paper, he also directly contributes to documenting the lessons
learned at Cordys.

In order to organize the rich data we collected over the years, a comprehensive
framework was needed. Especially over the last few years more studies had become
available that provide various ways to analyze the use of agile methods in GSD.
However, a comprehensive framework is still lacking. Therefore, we constructed such
a framework based on a recent overview of the literature. The framework consists of
reported issues that can arise in using agile methods in a global setting and practices
that have been used to mitigate these. In the next section we present this framework.
Next, we use this framework to analyze the Cordys case study. We report how
Cordys, based on their experience, adapted practices, teams, organization processes or
tool support to make agile methods work. We contrast this to the strategies listed in
the framework. Finally, we summarize key findings and discuss potential further
extensions to agile methods for use in GSD.

2 Challenges and Best Practices

2.1 Challenges in Global Agile Development

Hansen and Baggesen [9] describe experiences of using Scrum in a distributed setting
between Denmark and Bangladesh. To implement Scrum effectively, it was first
introduced to the local teams and later, after experiences was gained, implemented in
the global teams. Onsite training sessions in Scrum were held by the CTO. Very
experienced senior developers and consultants were moved into global Product
Owner roles to establish a more structured flow of tasks and collaboration. “Proxy
product owners” were introduced as anchor points for each offshore team. To increase
understanding of the product requirements and context with the offshore teams,
several domain knowledge sessions in Bangladesh were held. As trust between teams
became a problem, onshore and offshore teams were merged into a single team with a
single backlog of work. Sprints within sprints were introduced to break down user
stories into smaller ones. Daily Scrum meetings and global code reviews created trust.
The physical task board was quickly converted into a web-based virtual task board.
Efficiency and relationships were further improved by introduction of automated
testing and code reviews. Code built in Denmark was inspected by a team mate in
Bangladesh and vice versa. To bridge cultural barriers, and build social relationships,
people were moved around between both locations.

138 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

Ramesh et al [19] based on three company case studies of multiple mid size
distributed projects elicit successful practices to slightly adjust and customize agile
practices to make them work in a global setting. We summarize their findings here.
Rather than starting with informal agile processes from the start, devote the first two or
three iterations of a project to finalize critical requirements and develop a high-level
architecture. Instead of relying exclusively on informal means for project tracking and
monitoring utilizing a product/process repository better supports knowledge sharing.
Build well understood functionality first to create an atmosphere in which both the
developers and the client representatives were acclimatized to the processes, tools, and

Table 1. Challenges and Reported Practices of Global Agile Development

Challenge Practices
Synchronous
communication

S1. Synchronize work hours [19],[11]
S2. Make meetings short and effective by posting three daily Scrum

questions or develop backlog (feature list) before attending the
distributed meetings [11]

S3. Constant communication [19]
S4. A scrum team allows additional distributed meetings along with

Scrum master meeting attended by technical lead or design architect
of each local Scrum team [11]

S5. Distributed daily Scrum meetings are cut down to twice-a-week
meetings [11]

S6. XP pair programming can help to increase time overlap and reduce
temporal distance [10]

S7. Reduce the dependency between sites. Each role in a team at one site
has a counterpart on the other site [16].

Collaboration
and coordination
Difficulties, lack
of trust

C1. Informal communication through formal channels [19]
C2. Frequent visits by distributed partners. Visits should be long enough

to allow for informal chat and building social ties [19],[11],[16]
C3. Build cohesive team culture [19]
C4. Focus on well understood requirements rather than critical new

functionality [19]
C5. Document requirements at different levels of formality [19]
C6. Maintaining valuable documentation [19]
C7. Scrum simple planning can help increase “teamness” and reduce

geographical distance [10]
C8. XP pair programming and Scrum pre-game phase can help increase

mutual understanding and collaboration within and between teams
and reduce sociocultural distance [10]

C9. Scrum team gathers and performs few initial sprints at one site
before distributed development starts [11]

C10. Scrum team are gathered quarterly or annually for few days [11]
C11. Mandatory demo presentation during retrospective sessions to reduce

offshore silence [11]
C12. Scrum teams may move from a collocated project to a distributed

project gradually through several stages (i.e., evaluation, inception,
transition and steady state) [11]

C13. A business/software analyst interfaces with the customer on the other
site. The proxy customer can make decisions on behalf of the real
customer [16]

 Getting Agile Methods to Work for Cordys Global Software Product Development 139

Table 1. (continued)

Communication
Bandwidth

B1. Use “multiple communication modes” to ensure that a Scrum team
with distributed project stakeholders is supported with various
options of communication tools (phone, web camera, teleconference,
video conference, web conference, net meeting, email, shared
mailing list, Instant Message (IM), Short Message Service (SMS),
and Internet Relay chat) [11],[16]

Large Team L1. Autonomous sub teams are allocated work based on features,
functions and so on that ensure each sub team is allocated
independent architectural subsystems with well defined interfaces
project teams are geographically [11],[16]

L2. Autonomous Scrum teams are formed locally and each site conducts
their own scrum. A Scrum of Scrums is attended by a key touch
point member for each team to ensure inter-team communication.
Independent architectural subsystems with well defined interfaces
are allocated to each team to reduce inter site communication [11]

L3. Offshore teams can be geographically isolated and are not cross-
functional and may not use Scrum processes [11]

L4. A Centrally located management team” in which management
persons of each Scrum team are located in a central site [11]

Office Space O1. Each Scrum team is allocated to a single room so that they can
communicate with each other [11]

O2. Each site has a separate meeting room with all necessary network
connectivity and tools while attending a distributed meeting [11]

Evolving
Quality
requirements

Q1. Trust but verify [19]
Q2. Distributed Quality Assurance [19]
Q3. Supplement informal communication with documentation [19]

Transformation
Change and
Learning

T1. Scrum first introduced to the local teams and later, after experiences
was gained, implemented in the global teams [9]

T2. Rotating gurus provide initial training and mentoring to the other site

[16]

T3. Conduct “initial Scrum training,” “technical Scrum” to clarify new
technology issues, reinforce the value of Scrum and improve team
collaboration while using Scrum practices [11]

the application. Instead of short time boxing typical in agile methods, allow for a
flexible short-cycle approach in which two to three development cycles are used.
Synchronize work hours instead of trying to establish 24x7 schemes. Facilitate informal
communication through formal channels to prevent miscommunications. More than
custom in co-located agile projects, coordination roles of project managers/leads are
important. Constant (meaning almost 24h) communication using mail and
videoconferencing is required. Trust is even more important in the absence of formal
control. Frequents visits of senior management, customers and product managers to
developing sites or the reverse are needed to build trust. Agile working in a distributed
fashion requires a cohesive team culture. Trust needs to be supplemented with on-site
verification. Quality assurance and supplementing informal communication with formal
documents can assure this.

140 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

Hossain et al. [11] conducted a systematic literature review to identify challenges
of using the prime agile management method Scrum in global software development.
They initially identified 366 published papers which they reduced to 20 primary
papers. Based on the frequency that a challenge is reported in the literature, they
identify and rank seven challenges. In Table 1 we combined the challenges of the
studies discussed above and listed practices reported on these papers. Tool support for
agile distributed development is a complicated topic that has recently received more
attention. Therefore we dedicate a separate section to this topic.

2.2 Tools for Globally Distributed Teams

Globally distributed teams that use agile methods need a variety of tool support.
Dullemond et al. [6] discuss the advantages and challenges of the combination of
agile software development and GSE with a focus on how these be supported with
technological aids. They present five types of technology requirements for tools used
in global projects. Abbattista et al. [1] provide an overview of various current and
emerging tools for supporting global teams. In Table 2, we integrated both studies to
provide an integrated overview of technology requirements and available tool
support.

Table 2. Requirements for technology support and sample tools

Requirements [6] Description Examples of tools [1]
Facilitates direct
contact between
colleagues

F1. Technological
support which
facilitates direct
communication between
two or more actors.

Email is the most-widely used and successful
collaborative application email can support
conversations, but also operate as a
task/contact manager. Recently, chat and IM
have been spreading more and more in the
workplace because, unlike email, they are
‘socially translucent’, providing a lightweight
means to ascertain availability of remote team
members and contact them in a timely
manner. When rich communication is
required audio and video conference may be
applied
Collaborative development environments
(CDE). A CDE provides a project workspace
with a standardized toolset to be used by the
global software team. Earliest CDE were
developed within open source software (OSS)
projects because OSS projects, from the
beginning, have been composed of dispersed
individuals (e.g. SourceForge). Some CDE
also include facilities for transparency and
continuous integration and build.

 Getting Agile Methods to Work for Cordys Global Software Product Development 141

Table 2. (continued)

Facilitates
knowledge
sharing among
colleagues

F2. Technological
support which
facilitates the sharing of
technical project
knowledge.

Knowledge center. This function is mostly
document-driven and web-enabled, and
allows team members to share explicit
knowledge across a work unit. A knowledge
center includes technical references,
standards, frequently asked questions (FAQs)
and best practices. Some CDE’s include
wiki’s and blogs to facilitate the creation of a
project memory. Researchers have also
experimented with social tagging of source
code in a collaborative environment

Facilitates
transparency of
the project status

F3. Technological
support which
facilitates the sharing of
organizational project
knowledge.

Software Configuration management (SCM).
A software configuration management tool
includes the ability to manage change in a
controlled manner, by checking components
in and out of a repository, and the evolution
of software products, by storing multiple
versions of components, and producing
specified versions on command. (example:
SVN)

Facilitates quality
assurance

F4. Technological
support which
facilitates quality
assurance functions to
monitor and guarantee
the quality of the
product.

Bug and issue tracking. This function is
centered on a database, accessible by all team
members through a web-based interface.
Other than an identifier and a description, a
recorded bug includes information about who
found it, the steps to reproduce it, who has
been assigned on it, which releases the bug
exists in and it has been fixed in.

Facilitates
continuous
integration and
frequent builds

F5. Technological
support which eases the
process of continuously
integrating the system
as well as producing
builds frequently.

Build and release management. It allows
projects to create and schedule, typically
through a web interface, workflows that
execute build scripts, compile binaries,
invoke test frameworks, deploy to production
systems, and send email notifications to
developers. are essential tools to perform
continuous integration, an agile development
practice that allows developers to integrate
daily, thus reducing integration problems

3 Cordys Case Study

The benefits of agile processes to enable a lean and flexible development process sound
appealing, especially to a software product company that has to deliver competitive
products in a rapidly changing market. Cordys is such a company. Founded in 2001,
Cordys initiated a venture to develop from the ground up a Business Collaboration
Platform, based on the principles of a Service Oriented Architecture covering an

142 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

Enterprise Service Bus (ESB), Business Process Management (BPM) and an Integrated
Services Environment [5]. The product would allow existing IT assets to be exposed,
embedded, deployed and managed from a business-driven, process perspective. Now,
after ten years and thousands of man-years of development, the company's recent
release is viewed by analists as a significant player in the BPM market [24].

Cordys employs 560 people globally. Roughly 320 are based in India, 110 in the
Netherlands, 50 in Germany, 20 in UK, 30 in China, and 30 in the Americas [24].
Cordys has deployed a globally distributed product development process from the
start in 2001. From 2001-2005 Cordys focused entirely on new product development
financed by venture capital. Over the last five years, gradually more customers were
attracted and implementation partners were added to the Cordys ecosystem.
Customers include KPN, the World Bank, AXA financial services and Equens.
Partners of Cordys include Accenture, Infosys, Cap Gemini and Atos Origin [24].

In search of a development process that would support its highly innovative
environment and would focus on delivering high quality software code in short
delivery cycles Cordys started to explore agile methods in 2004. Cordys has been a
very early adopter of an agile development process in a globally distributed setting.
Over the past seven years they have learned and adapted their agile process and
diverged from the known agile practices that were typically designed for a co-located
project team. In the following sections we use the challenges and practices reported in
the literature (Table 1 and Table 2) to analyze the seven years of experience of using
agile methods in globally distributed product development at Cordys.

\

Fig. 1. Combining Scrum and XP: (Source: [14])

 Getting Agile Methods to Work for Cordys Global Software Product Development 143

3.1 Synchronous Communication

Starting in 2004, Cordys globally implemented Scrum combined with the agile
practices of eXtreme Programming (XP) [4]. Cordys quickly rolled out Scrum to its
entire development team that at that time had approximately 40 developers in Putten,
the Netherlands and 230 in Hyderabad, India. As is demonstrated in Figure 1, Scrum
and XP provide complementary agile practices. Where Scrum offers typically a
framework for planning and coordinating work, XP provide collaborative practices
for design and development work.

Daily Scrum Meeting
• Done since last meeting
• Plan for today
• Obstacles?

30 days

24 hours

Backlog tasks
expanded
by team

Potentially Shippable
Product Increment

Product Backlog
Prioritized Features

desired by Customer

Sprint Planning Meeting
• Review Product Backlog
• Estimate Sprint Backlog
• Commit to 30 days

Sprint Review Meeting
• Demo features to all
• Retrospective on Sprint

Sprint Backlog
Features assigned to Sprint
Estimated by team

Business Need

Fig. 2. Scrum process (Source: Cordys)

Cordys adopted a mostly standard Scrum cycle (see Figure 2) that includes agile
practices such as daily team meetings and a central product backlog that guides
activities. Work towards a new set of functionality is organized in fixed length
"Sprints". A sprint starts with planning and ends with a review. A sprint planning
meeting is a time-boxed meeting dedicated to developing a detailed plan for a sprint.
Project stakeholders attend sprint review meetings to review the state of the business,
the market and technology. A daily Scrum meeting is a short daily meeting (usually
up to 15 minutes long) in which each team member is expected to address three
questions: what did I do yesterday, what will I do today and what impediments are in
my way? Three artefacts, namely: product backlogs, sprint backlogs and burn-down
charts are produced. Backlogs consist of customer requirements while daily burn
down charts show what cumulative work remains. Cordys set the meeting frequency
to quarterly business plan reviews and initially 6 week sprints. Later this was reduced
to 4 weekly and eventually 2-weekly sprints to get requirements implemented faster
and increase productivity. According to the program manager one can not
immediately start with short sprints from day one. “You need to build up experience
with the process to be able to come up with working demo’s in a short timeframe”.
Cordys teams consist of 6-10 persons with various roles like Software Engineers,
Product Engineers, Architect(s) and a Program Manager. Management is mainly

144 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

concerned with identifying deficiencies or impediments in the development process
and practices. Essential to Scrum is that it is goal-driven and gives a high level of
personal responsibility and empowerment to developers. For example, developers get
the freedom to choose specific software development techniques, methods, and
practices.

Synchronizing work hours (S1, Error! Reference source not found.) was feasible
as Putten and Hyderbad have only a 4½ hour time difference allowing for sufficient
overlap to organize joint meetings during regular work hours. XP user stories play a
central role in Sprint meetings. A joint repository with user stories helps to create a joint
view on the project and its backlog (S2). In an interview in 2008, the program manager
noted: “It is important to get the user story ready in time before the sprint starts, as it is
delineates the requirements to execute in the sprint and plan the steps appropriately”.

Cordys minimizes required communication by empowering local teams. The team
structure and work distribution closely resembles the product architecture. Scrum
meetings are mostly held locally on site. However, scrum of scrum meetings still
require distributed communications. Also, dependencies between modules do exist.
Dependencies that require attention are identified in a sprint meeting and are usually
logged in the bug tracker and followed up by frequent email and chat communication
between engineers, architects, team leads and release management (similar to S3).
When issues gradually escalate conference calls or a video conferencing is organized
to resolve the issue. In addition to standard scrum meetings, all new requirements,
their user stories and their impact on the component architecture are discussed
between architects and team leads in a video conference (similar to S4). Dependencies
between requirements and architectural components are discussed in a global sprint
meeting. In these meetings work is assigned to teams and to upcoming or future
sprints.

3.2 Collaboration and Coordination Difficulties, Lack of Trust

While teams have a certain level of autonomy, the product backlog is centrally
monitored (C1). An example of a product backlog chart is shown in Figure 3. Cordys
supports the agile principle that Face-to-Face interaction is the most productive
method of communicating with customers and among developers. In our interview in
2005 Mr. ten Napel said:"we do believe this is true. We have never attempted to run
Scrum meetings using collaborative tools such as videoconferencing. The Scrum
master needs to read and even smell emotions of his team members". Fortunately,
Cordys' component-oriented architecture enables Cordys to apply Scrum. Ownership
of a specific component if is fully given to a single co-located team. The teams pick
up tasks from the centrally administrated back-log list that concern their component.
As a result, virtually all scrum meetings are co-located. When team members of the
remote site do need to be present, they organize a video conference or travel to the
site (C2).

As Cordys develops a generic product without a direct customer, the agile principle
of direct interaction with the customer is impossible to implement. User requirements
are set through bundling and generalizing request from current customers and
predicting the needs of new markets. De Visser: "it is essential to have somebody to

 Getting Agile Methods to Work for Cordys Global Software Product Development 145

play the customer role in scrum team meetings. We usually involve somebody from
product marketing to play this role." (similar to C13). Later (from 2008) this role was
taken by Product Management. A close collaboration between Product Management
and Marketing exists.

Although agile methods direct that developing extensive (relatively complete) and
consistent documentation and software models is counter-productive, Cordys does
recognize a need for documentation. Ten Napel:"documenting is still important but
should not be done only because the method prescribes it. Only if the team sees clear
added value to develop diagrams and models, these should be created. We do provide
various templates to facilitate this". In addition, Cordys created a configuration
management and process support platform using the Cordys product itself. The
process can thus be described as a mix of central coordination and local freedom (C5,
C6). In an interview in 2008 the program manager stressed: “The requirements need
to be articulated till the level that developers can understand them and be sufficiently
precise to be a start of the extreme programming process” (C5).

Release Burndown CWS framework D1

103 103

65 63

32

0 0

9 9

20

0

20

40

60

80

100

120

S
ta

rt

af
te

r
7A

af
te

r
7B

af
te

r
8A

af
te

r
8B

af
te

r
9A

af
te

r
9B

F
ea

tu
re

 P
o

in
ts

0

10

20

30

40

50

60

F

ea
tu

re
s

C
o

m
p

le
te

d

Scope Change

Remaining Work

Features Completed

Fig. 3. Example of Cordys’ burndown chart (Source: Cordys)

3.3 Communication Bandwidth

Cordys did adopt the practice of “multiple communication modes” to ensure that a
Scrum team with distributed project stakeholders is supported with various options of
communication tools (phone, web camera, teleconference, video conference, web
conference, net meeting, email, shared mailing list, Instant Messages and Internet
Chat). The program manager (2011 interview) explains that engineers use chat daily.
Complex issues get a functional and business owner and regular video conferences
are organized with the teams involved. All designs are maintained on a wiki. As the
teams collaborated for multiple years most developers know each other and are

146 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

flexible in picking the proper communication tools (B1). To discuss dependencies
between teams a Scrum of Scrums meeting was held usually using a telco. “In this
evaluation meeting of the last sprint it is important to have rich communication”, the
program manager stressed (2011 interview).

3.4 Large Teams

The program manager recalls (2011 interview) that when Scrum and XP were
introduced, all the handbooks talked about teams of typically 8, 10 or 12 people. “We
had more than a hundred developers, how should we implement agile practices? No
guidelines existed for this project scale. So we started to standardize on documenting
component interfaces (API’s) as small descriptions that could be demoed. We left the
process to arrive in time at such demos to the teams” (this is in line with L1). “One of
the most important lessons we learned is that sound component architecture of the
product is key and teams need to work dedicated to components in order to make
distributed agile work”. “Components that grew too complex were split as team size
needed to stay in the range of 8 to 12 people to remain effective”. Over time the
Cordys product was spilt into more components: from four large components initially,
to more than ninety components today. This process was not easy. An initial attempt
to split the product in multiple components failed and the teams had to move back to
the original structure. A second attempt took two months but resulted in a successful
split up of the product in more independent components. It was a tough decision but
management eventually realized that this was the only way the product could be
developed further without an enormous overhead in global team to team
communications. Today, there are 15 teams that are responsible for several
components each. Teams communicate along the lines of API to API communication.
They keep each other posted of planned changes in internal API’s. “It is almost like a
vendor-customer relationship between teams. The only difference with the external
interfaces that our end customers use is that we have to assure backward compatibility
for those. Within the product that is not needed”. Components that get more radically
new interfaces will continue to offer the deprecated API for some weeks till the
consuming teams have migrated to the new component interface.

Offshore teams are allowed freedom as to how they exactly implement scrum
meetings and processes (L2, L3). Cordys has learned that enforcing a precise process
is not the right way towards effective collaboration. Cordys does not co-locate
management in a single site (no L4).

To keep the component architecture simple business requirements are translated to
user stories that should map to a small set or preferably a single component.

3.5 Office Space

Project teams share a work room (Figure 4). Separate video conferencing facilities are
used for the sprint review meeting. “Only a real collaborative whiteboard remains on
our wish list to support joint design and planning meetings. The technology is
maturing now” (O1, O2).

 Getting Agile Methods to Work for Cordys Global Software Product Development 147

Fig. 4. Project room during an architecture meeting (Source: Cordys)

Fig. 5. Example of Cordys user story overview and a user story (Source: Cordys)

3.6 Evolving Quality Requirements

The setting of a product company ensures that trust can be built up over many years
of development. Some developers have worked together for decades (also in the
former Baan Company). Initial ideas to establish process standards within teams were
quickly abandoned. The program manager (2011 interview) recalls why this was not a
feasible route: “each time it was different in terms of style and way of working.

148 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

Teams work on different parts of the product that consists of different technologies.
Each team had their own problems and issues”. Management introduced a
methodology of empowerment and focused on the quality of the business plan the
team produced and the team quality improvement over time”. No between teams
comparisons were made on quality or productivity.

3.7 Transformation Change and Learning

Cordys experimented in a single team first with the agile approach. In November
2005, Hans de Visser, VP services and Steven ten Napel, VP operations look back on
how Scrum and XP were introduced: “Teams are able to and willing to evaluate
themselves. When Scrum was introduced in Cordys in 2004, this was not yet common
practice”. The company was in the process of moving up the CMM ladder. Most
developers and architects had a history of working in Baan (the former company of
Cordys Founder Jan Baan) that had also heavily invested in achieving high CMM
levels through establishing standard methods and processes, measuring quality and
predicting progress. De Visser: "adopting Scrum was a shift in mindset. Although we
did not throw everything we set the quality focus overboard, the focus changed to
innovation and communication…Currently, we manage by setting priorities in the
product backlog, the teams themselves decide how many features they will implement
in the next Sprint and how". Scrum, became firmly embedded across the organization.
Mr. Ten Napel summarizes key steps in achieving this: "You should unconditionally
believe in the process. Although it is tempting, never implement an agile process
informally. For example, Sprint timelines should really be fixed; Scrum teams should
not become too large, etc. Do not start with an insignificant pilot but immediately
apply the process in a critical project (not fully in line with C4). Also, we had an
enthusiastic Scrum champion; we trained Scrum masters, and established a program
office that has supported the full transition. Scrum training was organized in

30 min

Continuous Team Level
Integration & Regression

Test

6 h.

Nightly Integration Tests

Component Team

Team
Edition

Find bugs upstreamleast expensive more expensive

Developer

jar

Local build & Unit Test

10 min

Developer

jar

Local build & Unit Test

10 min

Developer

jar

Local build & Unit Test

10 min

Fig. 6. Continuous local builds and team level integration and testing (Source: Cordys)

 Getting Agile Methods to Work for Cordys Global Software Product Development 149

Hyderabad and Putten for architects and team leads. Last but certainly not least, from
the start Jan Baan, then our CEO, viewed the Scrum process to fit our core goal of
being innovative" (T3). In 2011, the Program manager looks back with confidence
that initially starting with Scrum in one local team was a good decision (T1). “Still
initially, many team managers thought this was yet another management fad that
would pass by, they did talk about Sprints and Scrums but hadn’t actually changed
much in their processes. It took time to get accustomed to the new way of working”.

Fig. 7. Report of automated regression tests (Source: Cordys)

3.8 Tools for Global Software Teams

Over the years Cordys invested much in tools to support the agile way of working.
Initially very limited and simple tools were used but as the product increased in size
various tools were introduced. In order to gain more productivity, each step, feature or
functionality is tested. The program manager (2011 interview) notes that “in order to
make the approach work we established a central code repository. We found that each
team needed to have a code branch that they could individually test and in addition we
needed to make sure that every one or two weeks a commit was made to our
configuration management tool SVN so that integration tests could be run (F3, F5 in
Table 2). We further established continuous integration tests for team branches and
the entire product. It took us half a year to make sure that new code could be added to
the trunk (the main body of development, originating from the start of the project until
the present) and from this automatically several builds could be generated and tested
(Figure 6)(F4). Each team has to comply to the rules so that when they add to the
trunk the build is not allowed to break and install and the functionality should pass the
tests. “The only way to get to shorter sprints is to have automated testing”. Bugzilla
was used to report bugs and assign them to teams (F4). A single installation allowed
management to keep an overview of bug statuses. The Auto Pilot tool is used to create

150 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

daily builds, to execute all the static and dynamic tests automatically, to monitor the
build quality, and to compare the quality with previous builds. The project manager
also knows the test coverage; in which line that developer or programmer found
difficulty and how much time they tested it. When evaluating the tools used by
Cordys against those we listed in Table 2, than we can conclude that most categories
have been implemented. Only a true collaborative development environment is not
yet in place (CDE). This can be explained as teams work on various components
using different technologies and a fully integrated CDE would be of limited added
value.

4 Conclusion and Discussion

Getting agile methods to work in global software development is a potentially
rewarding but challenging task. Agile methods are relatively young and still maturing.
The application to globally distributed projects is in its infancy. The debate whether
agile methods are suitable for such projects is ongoing. The literature provides mixed
results and recommendations as to how and under what conditions agile methods can
bring added value. Various guidelines on how to apply and sometimes adapt agile
methods have been proposed. However, systematic literature reviews reveal that
detailed evaluative studies are scarce and limited to small and medium sized projects.
This study contributes to both theory and practice. The theoretical contribution
includes a framework that integrates best practices of adapting and applying agile
methods to GSD reported in the literature. It integrates various experience reports and
systematic reviews on practices and tools. The framework is applied to analyze the
experiences of Cordys in a longitudinal case study. To our knowledge, no other
studies exist on large projects using longitudinal data. The experiences from Cordys
documented in this paper will be of value to other larger projects that aim to be
successful in applying agile in GSD.

Several key lessons have been learned at Cordys in seven years of applying agile
methods in a global setting. Introducing agile is hard in a big bang fashion. A gradual
approach though firmly supported by management works better. It is essential not to
try to standardize the details of agile methods across global teams. Agile is all about
trust, empowerment and some freedom should be allowed to local teams to tailor their
process and documentation style. A mix of central coordination and local freedom and
empowerment works best. Although the deadline of a sprint should be firm, one
should not be too dogmatic about the length of sprints. It takes time to move to short
sprints especially as many teams are jointly working on a complex product. Co-
located scrum meetings are far more effective than distributed scrums. Teams should
ideally share an office space. To achieve as much local scrums as possible, the
product architecture should be component based and local teams should remain small
and work only on a limited set of components. Communication between teams should
follow the lines of the product architecture. Multiple communication modes should be
adopted by the project and distributed scrum meetings absolutely require high quality
tool support. The role of tools is vital in constructing a complex product globally.
Getting configuration management, bug reporting, automatic integration and testing in
place is critical to success. It is a significant investment but worth every effort in the

 Getting Agile Methods to Work for Cordys Global Software Product Development 151

longer run. Cordys did not find all Scrum/XP practices equally useful. Collective code
ownership could cause confusion and mixed responsibilities and was not adopted.
Pair programming was found too expensive and inefficient and is not practiced at
Cordys.

We can conclude that the framework compiled in this study (Table 1, Table 2) is
effective for analyzing the use of agile methods in large global software development
projects. The findings from the Cordys case reveal that the practices included in the
framework are sometimes directly applied, adopted over time, adapted to the context
or not applied at all. Remarkably, some of the practices were not found effective at
Cordys and alternative practices were invented. To understand how agile practices
should be introduced and adapted to fit the project context and stage of maturity we
plan to study more global projects that are in the process of adopting, tuning and
adapting agile methods. We also aim to continue to follow the further experiences and
adaptations of agile methods at Cordys.

References

1. Abbattista, F., Calefato, F., Gendarmi, D., Lanubile, F.: Incorporating social software into
distributed agile development environments. In: 1st International Workshop on Automated
Engineering of Autonomous and Runtime Evolving Systems, and ASE 2008 the 23rd
IEEE/ACM Int. Conf. Automated Software Engineering, pp. 46–51 (2008)

2. Abrahamsson, P., Warstab, J., Siponenb, M.T., Ronkainena, J.: New Directions on Agile
Methods: A Comparative Analysis. In: Proceedings of the 25th ÍEEE International
Conference on Software Engineering (2003)

3. Aydin, M.N., Harmsen, F., Slooten van, K., Stegwee, R.: On the Adaptation of An Agile
Information Systems Development Method. Journal of Database Management, Special
issue on Agile Analysis, Design, and Implementation 16(4) (November-December 2005)

4. Beck, K.: Embracing Change With Extreme Programming. IEEE Computer 32, 70–77
(1999)

5. Cordys Website, http://www.cordys.com/
6. Dullemond, K., Van Gameren, B., Van Solingen, R.: How technological support can

enable advantages of agile software development in a GSE setting. In: Proceedings 4th
IEEE International Conference on Global Software Engineering, ICGSE, pp. 143–152
(2009)

7. Eisenhardt, K.M.: Building theories from case study research. The Academy of
Management review 14, 532–550 (1989)

8. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising agile methods to software practices
at intel shannon. European Journal of Information Systems 15(2), 200–213 (2006)

9. Hansen, M.T., Baggesen, H.: From CMMI and isolation to scrum, agile, lean and
collaboration. In: Proceedings of the Agile Conference, AGILE, pp. 283–288 (2009)

10. Holmström, H., Fitzgerald, B., Ågerfalk, P.J., Conchúir, E.Ó.: Agile practices reduce
distance in gloral software development. Information Systems Management 23(3), 7–18
(2006)

11. Hossain, E., Ali Babar, M., Paik, H.: Using scrum in global software development: A
systematic literature review. In: Proceedings - 4th IEEE International Conference on
Global Software Engineering, ICGSE, pp. 175–184 (2009)

152 J. van Hillegersberg, G. Ligtenberg, and M.N. Aydin

12. Hossain, E., Babar, M.A., Paik, H., Verner, J.: Risk identification and mitigation processes
for using scrum in global software development. In: Proceedings - Asia-Pacific Software
Engineering Conference, APSEC, pp. 457–464 (2009)

13. Jalali, S., Wohlin, C.: Agile practices in global software engineering - A systematic map.
In: Proceedings - 5th International Conference on Global Software Engineering, ICGSE,
pp. 45–54 (2010)

14. Kniberg, H.: Blog on Combining Scrum and XP,
http://blog.crisp.se/henrikkniberg/2007/10/13/
1192249140000.html

15. Kotlarsky, J., Oshri, I., Van Hillegersberg, J., Kumar, K.: Globally distributed component-
based software development: An exploratory study of knowledge management and work
division. Journal of Information Technology 22(2), 161–173 (2007)

16. Paasivaara, M., Lassenius, C.: Could global software development benefit from agile
methods? In: Proceedings - IEEE International Conference on Global Software
Engineering, ICGSE 2006, pp. 109–113 (2006)

17. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Using scrum in distributed agile
development: A multiple case study. In: Proceedings - 2009 4th IEEE International
Conference on Global Software Engineering, ICGSE, pp. 195–204 (2009)

18. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development. Prentice-
Hall, Englewood Cliffs (2002)

19. Ramesh, B., et al.: Can distributed software development be agile? Comm.of the
ACM 49(10), 41–46 (2006)

20. Sakthivel, S.: Managing risk in offshore systems development. Communications of the
ACM 50(4), 69–75 (2007)

21. Sarker, S., Sarker, S.: Exploring agility in distributed information systems development
teams: An interpretive study in an offshoring context. Information Systems
Research 20(3), 440–461 (2009)

22. Schwaber, K.: Scrum Development Process. presented at OOPSLA 1995 Workshop on
Business Object Design and Implementation (1995)

23. Schwaber, K., Beedle, M.: Agile Software Development With Scrum. Prentice-Hall,
Englewood Cliffs (2001)

24. Thompson, M.: Technology audit Business Operations Platform 4, Cordys, Butler Group
(June 2009)

25. Turk, D., France, R., Rumpe, B.: Assumptions Under lying Agile Software Development
Processes. Journal of Database Management (JDM) 16(4) (October-December 2005)

26. Woodward, E., Surdek, S., Ganis, M.: A Practical Guide to Distributed Scrum,
Deployment and Advanced Configuration. IBM Press (2010)

	Getting Agile Methods to Work for Cordys Global Software Product Development
	Introduction
	The Rise of Agile Methods for Systems Development
	Agile Methods in Globally Distributed Development
	Research Method

	Challenges and Best Practices
	Challenges in Global Agile Development
	Tools for Globally Distributed Teams

	Cordys Case Study
	Synchronous Communication
	Collaboration and Coordination Difficulties, Lack of Trust
	Communication Bandwidth
	Large Teams
	Office Space
	Evolving Quality Requirements
	Transformation Change and Learning
	Tools for Global Software Teams

	Conclusion and Discussion
	References

