Abstract
The price of anarchy [16] is by now a standard measure for quantifying the inefficiency introduced in games due to selfish behavior, and is defined as the ratio between the optimal outcome and the worst Nash equilibrium. However, this notion is well defined only for games that always possess a Nash equilibrium (NE). We propose the dynamic inefficiency measure, which is roughly defined as the average inefficiency in an infinite best-response dynamic. Both the price of anarchy [16] and the price of sinking [9] can be obtained as special cases of the dynamic inefficiency measure. We consider three natural best-response dynamic rules — Random Walk (RW), Round Robin (RR) and Best Improvement (BI) — which are distinguished according to the order in which players apply best-response moves.
In order to make the above concrete, we use the proposed measure to study the job scheduling setting introduced in [3], and in particular the scheduling policy introduced there. While the proposed policy achieves the best possible price of anarchy with respect to a pure NE, the game induced by the proposed policy may admit no pure NE, thus the dynamic inefficiency measure reflects the worst case inefficiency better. We show that the dynamic inefficiency may be arbitrarily higher than the price of anarchy, in any of the three dynamic rules. As the dynamic inefficiency of the RW dynamic coincides with the price of sinking, this result resolves an open question raised in [3].
We further use the proposed measure to study the inefficiency of the Hotelling game and the facility location game. We find that using different dynamic rules may yield diverse inefficiency outcomes; moreover, it seems that no single dynamic rule is superior to another.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S., Elits, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for a network creation game. In: Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms (2006)
Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-Optimal Network Design with Selfish Agents. In: STOC 2003 (2003)
Azar, Y., Jain, K., Mirrokni, V.: (almost) optimal coordination mechanisms for unrelated machine scheduling. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 323–332. Society for Industrial and Applied Mathematics, Philadelphia (2008)
Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 815–824. Society for Industrial and Applied Mathematics, Philadelphia (2009)
Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: SODA, pp. 413–420 (2002)
Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)
Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation game. In: ACM Symposium on Principles of Distributed Computing, PODC (2003)
Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 109–117. Springer, Heidelberg (2008)
Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: FOCS 2005: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 142–154. IEEE Computer Society, Washington, DC (2005)
Hotelling, H.: Stability in competition. Economic Journal 39(53), 41–57 (1929)
Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on nonidentical processors. Journal of the ACM 24, 280–289 (1977)
Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 410, 1589–1598 (2009)
Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)
Monderer, D., Shapley, L.S.: Potential Games. Games and Economic Behavior 14, 124–143 (1996)
Moulin, H.: On strategy-proofness and single-peakedness. Public Choice 35, 437–455 (1980)
Papadimitriou, C.: Algorithms, games, and the Internet. In: Proceedings of 33rd STOC, pp. 749–753 (2001)
Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)
Roughgarden, T.: The price of anarchy is independent of the network topology. In: STOC 2002, pp. 428–437 (2002)
Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)
Vetta, A.R.: Nash equilibria in competitive societies with applications to facility location, traffic routing and auctions. In: Symposium on the Foundations of Computer Science (FOCS), pp. 416–425 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berger, N., Feldman, M., Neiman, O., Rosenthal, M. (2011). Dynamic Inefficiency: Anarchy without Stability. In: Persiano, G. (eds) Algorithmic Game Theory. SAGT 2011. Lecture Notes in Computer Science, vol 6982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24829-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-24829-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24828-3
Online ISBN: 978-3-642-24829-0
eBook Packages: Computer ScienceComputer Science (R0)