Abstract
A time-selective convertible undeniable signature scheme allows a signer to release a time-selective converter which converts undeniable signatures pertaining to or up to a specific time period to publicly verifiable ones but not those in any other time periods. The security of existing schemes relies on a strong and interactive assumption called xyz-DCAA in random oracle model or several relatively new hash function assumptions in the generic group model. For some of them, the converter size for each time period also grows linearly or logarithmically with the number of previous time periods. In this paper, we propose a new construction in which all the converters (i.e. time-selective, selective and universal) are of constant size. In particular, the time-selective converter for each time period is only one group element, no matter how many previous time periods there are already. The security of this new construction is proved in the random oracle model based on non-interactive and falsifiable assumptions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
El Aimani, L., Vergnaud, D.: Gradually convertible undeniable signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 478–496. Springer, Heidelberg (2007)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS, pp. 62–73. ACM, New York (1993)
Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)
Boyar, J., Chaum, D., Damgård, I., Pederson, T.P.: Convertible undeniable signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–205. Springer, Heidelberg (1991)
Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)
Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)
Damgård, I., Pedersen, T.: New convertible undeniable signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Heidelberg (1996)
Galbraith, S.D., Mao, W.: Invisibility and anonymity of undeniable and confirmer signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)
Gennaro, R., Krawczyk, H., Rabin, T.: RSA-based undeniable signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 132–149. Springer, Heidelberg (1997)
Gentry, C., Molnar, D., Ramzan, Z.: Efficient designated confirmer signatures without random oracles or general zero-knowledge proofs (extended abstract). In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 662–681. Springer, Heidelberg (2005)
Huang, Q., Wong, D.S.: Short convertible undeniable signature in the standard model. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 257–272. Springer, Heidelberg (2011)
Kurosawa, K., Takagi, T.: New approach for selectively convertible undeniable signature schemes. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 428–443. Springer, Heidelberg (2006)
Laguillaumie, F., Vergnaud, D.: Time-selective convertible undeniable signatures. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 154–171. Springer, Heidelberg (2005)
Laguillaumie, F., Vergnaud, D.: Time-selective convertible undeniable signatures with short conversion receipts. Information Sciences 180(12), 2458–2475 (2010)
Michels, M., Petersen, H., Horster, P.: Breaking and repairing a convertible undeniable signature scheme. In: CCS, pp. 148–152. ACM, New York (1996)
Michels, M., Stadler, M.: Efficient convertible undeniable signature schemes. In: SAC 1997, pp. 231–244 (1997)
Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)
Okamoto, T.: Designated confirmer signatures and public-key encryption are equivalent. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 61–74. Springer, Heidelberg (1994)
Phong, L.T., Kurosawa, K., Ogata, W.: New RSA-based (selectively) convertible undeniable signature schemes. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 116–134. Springer, Heidelberg (2009)
Phong, L.T., Kurosawa, K., Ogata, W.: Provably secure convertible undeniable signatures with unambiguity. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 291–308. Springer, Heidelberg (2010)
Huang, Q., Wong, D.S., Susilo, W.: A new construction of designated confirmer signature and its application to optimistic fair exchange. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 41–61. Springer, Heidelberg (2010)
Schuldt, J.C.N., Matsuura, K.: An efficient convertible undeniable signature scheme with delegatable verification. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 276–293. Springer, Heidelberg (2010)
Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)
Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huang, Q., Wong, D.S., Susilo, W., Yang, B. (2011). An Efficient Construction of Time-Selective Convertible Undeniable Signatures. In: Lai, X., Zhou, J., Li, H. (eds) Information Security. ISC 2011. Lecture Notes in Computer Science, vol 7001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24861-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-24861-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24860-3
Online ISBN: 978-3-642-24861-0
eBook Packages: Computer ScienceComputer Science (R0)