Skip to main content

Understanding What we Cannot See: Automatic Analysis of 4D Digital In-Line Holographic Microscopy Data

  • Chapter
Video Processing and Computational Video

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7082))

Abstract

Digital in-line holography is a microscopy technique which got an increasing attention over the last few years in the fields of microbiology, medicine and physics, as it provides an efficient way of measuring 3D microscopic data over time. In this paper, we present a complete system for the automatic analysis of digital in-line holographic data; we detect the 3D positions of the microorganisms, compute their trajectories over time and finally classify these trajectories according to their motion patterns. Tracking is performed using a robust method which evolves from the Hungarian bipartite weighted graph matching algorithm and allows us to deal with newly entering and leaving particles and compensate for missing data and outliers. In order to fully understand the behavior of the microorganisms, we make use of Hidden Markov Models (HMMs) to classify four different motion patterns of a microorganism and to separate multiple patterns occurring within a trajectory. We present a complete set of experiments which show that our tracking method has an accuracy between 76% and 91%, compared to ground truth data. The obtained classification rates on four full sequences (2500 frames) range between 83.5% and 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ginger, M., Portman, N., McKean, P.: Swimming with protists: perception, motility and flagellum assembly. Nature Reviews Microbiology 6(11), 838–850 (2008)

    Article  Google Scholar 

  2. Stoodley, P., Sauer, K., Davies, D., Costerton, J.: Biofilms as complex differentiated communities. Annual Review of Microbiology 56, 187–209 (2002)

    Article  Google Scholar 

  3. Heydt, M., Rosenhahn, A., Grunze, M., Pettitt, M., Callow, M.E., Callow, J.A.: Digital in-line holography as a 3d tool to study motile marine organisms during their exploration of surfaces. The Journal of Adhesion 83(5), 417–430 (2007)

    Article  Google Scholar 

  4. Rosenhahn, A., Ederth, T., Pettitt, M.: Advanced nanostructures for the control of biofouling: The fp6 eu integrated project ambio. Biointerphases 3(1), IR1–IR5 (2008)

    Google Scholar 

  5. Frymier, P., Ford, R., Berg, H., Cummings, P.: 3d tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. U.S.A. 92(13), 6195–6199 (1995)

    Article  Google Scholar 

  6. Baba, S., Inomata, S., Ooya, M., Mogami, Y., Izumikurotani, A.: 3-dimensional recording and measurement of swimming paths of microorganisms with 2 synchronized monochrome cameras. Review of Scientific Instruments 62(2), 540–541 (1991)

    Article  Google Scholar 

  7. Weeks, E., Crocker, J., Levitt, A., Schofield, A., Weitz, D.: 3d direct imaging of structural relaxation near the colloidal glass transition. Science 287(5452), 627–631 (2000)

    Article  Google Scholar 

  8. Li, K., Miller, E., Chen, M., Kanade, T., Weiss, L., Campbell, P.: Cell population tracking and lineage construction with spatiotemporal context. Medical Image Analysis 12(5), 546–566 (2008)

    Article  Google Scholar 

  9. Miura, K.: Tracking movement in cell biology. Microscopy Techniques, 267–295 (2005)

    Google Scholar 

  10. Tsechpenakis, G., Bianchi, L., Metaxas, D., Driscoll, M.: A novel computation approach for simultaneous tracking and feature extraction of c. elegans populations in fluid environments. IEEE Transactions on Biomedical Engineering 55(5), 1539–1549 (2008)

    Article  Google Scholar 

  11. Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle filtering for tracking a variable number of interacting targets. TPAMI (2005)

    Google Scholar 

  12. Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking - linking identities using bayesian network inference. In: CVPR (2006)

    Google Scholar 

  13. Yang, M., Yu, T., Wu, Y.: Game-theoretic multiple target tracking. In: ICCV (2007)

    Google Scholar 

  14. Betke, M., Hirsh, D., Bagchi, A., Hristov, N., Makris, N., Kunz, T.: Tracking large variable number of objects in clutter. In: CVPR (2007)

    Google Scholar 

  15. Lu, J., Fugal, J., Nordsiek, H., Saw, E., Shaw, R., Yang, W.: Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J. Phys. 10 (2008)

    Google Scholar 

  16. Berg, H.: Random walks in biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  17. Hoyle, D., Rattay, M.: Pca learning for sparse high-dimensional data. Europhysics Letters 62(1) (2003)

    Google Scholar 

  18. Wang, X., Grimson, E.: Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In: CVPR (2008)

    Google Scholar 

  19. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–442 (2004)

    MATH  Google Scholar 

  20. Sbalzariniy, I., Theriot, J., Koumoutsakos, P.: Machine learning for biological trajectory classification applications. Center for Turbulence Research, 305–316 (2002)

    Google Scholar 

  21. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2) (1989)

    Google Scholar 

  22. Chen, M., Kundu, A., Zhou, J.: Off-line handwritten word recognition using a hidden markov model type stochastic network. TPAMI 16 (1994)

    Google Scholar 

  23. Nefian, A., Hayes, M.H.: Hidden markov models for face recognition. In: ICASSP (1998)

    Google Scholar 

  24. Yamato, J., Ohya, J., Ishii, K.: Recognizing human action in time-sequential images using hidden markov model. In: CVPR (1992)

    Google Scholar 

  25. Brand, M., Kettnaker, V.: Discovery and segmentation of activities in video. TPAMI 22(8), 844–851 (2000)

    Article  Google Scholar 

  26. Leal-Taixé, L., Heydt, M., Rosenhahn, A., Rosenhahn, B.: Automatic tracking of swimming microorganisms in 4d digital in-line holography data. In: IEEE WMVC (2009)

    Google Scholar 

  27. Leal-Taixé, L., Heydt, M., Weisse, S., Rosenhahn, A., Rosenhahn, B.: Classification of swimming microorganisms motion patterns in 4D digital in-line holography data. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 283–292. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Gabor, D.: A new microscopic principle. Nature 161(8), 777 (1948)

    Article  Google Scholar 

  29. Xu, W., Jericho, M., Meinertzhagen, I., Kreuzer, H.: Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001)

    Article  Google Scholar 

  30. Raupach, S., Vossing, H., Curtius, J., Borrman, S.: Digital crossed-beam holography for in situ imaging of athmospheric particles. J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006)

    Article  Google Scholar 

  31. Fugal, J., Schulz, T., Shaw, R.: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol. 20, 75501 (2009)

    Article  Google Scholar 

  32. Heydt, M., Divós, P., Grunze, M., Rosenhahn, A.: Analysis of holographic microscopy data to quantitatively investigate three dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur. Phys. J. E: Soft Matter and Biological Physics (2009)

    Google Scholar 

  33. Garcia-Sucerquia, J., Xu, W., Jericho, S., Jericho, M.H., Tamblyn, I., Kreuzer, H.: Digital in-line holography: 4d imaging and tracking of microstructures and organisms in microfluidics and biology. In: Proc. SPIE, vol. 6026, pp. 267–275 (2006)

    Google Scholar 

  34. Lewis, N.I., Xu, W., Jericho, S., Kreuzer, H., Jericho, M., Cembella, A.: Swimming speed of three species of alexandrium (dinophyceae) as determined by digital in-line holography. Phycologia 45(1), 61–70 (2006)

    Article  Google Scholar 

  35. Sheng, J., Malkiel, E., Katz, J., Adolf, J., Belas, R., Place, A.: Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007)

    Article  Google Scholar 

  36. Sheng, J., Malkiel, E., Katz, J., Adolf, J., Place, A.: A dinoflagellate exploits toxins to immobilize prey prior to ingestion. Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010)

    Article  Google Scholar 

  37. Sun, H., Hendry, D., Player, M., Watson, J.: In situ underwater electronic holographic camera for studies of plankton. IEE Journal of Oceanic Engineering 32(2), 373–382 (2007)

    Article  Google Scholar 

  38. Lindeberg, T.: Scale-space theory in computer vision. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  39. Kuhn, H.: The hungarian method for the assignment problem. Nav. Res. Logist. 2, 83–87 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  40. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pilgrim, R.: Munkres’ assignment algorithm; modified for rectangular matrices. Course Notes, Murray State University, http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html

  42. Masuda, N., Ito, T., Kayama, K., Kono, H., Satake, S., Kunugi, T., Sato, K.: Special purpose computer for digital holographic particle tracking velocimetry. Optics Express 14, 587–592 (2006)

    Article  Google Scholar 

  43. Iken, K., Amsler, C., Greer, S., McClintock, J.: Qualitative and quantitative studies of the swimming behaviour of hincksia irregularis (phaeophyceae) spores: ecological implications and parameters for quantitative swimming assays. Phycologia 40, 359–366 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leal-Taixé, L., Heydt, M., Rosenhahn, A., Rosenhahn, B. (2011). Understanding What we Cannot See: Automatic Analysis of 4D Digital In-Line Holographic Microscopy Data. In: Cremers, D., Magnor, M., Oswald, M.R., Zelnik-Manor, L. (eds) Video Processing and Computational Video. Lecture Notes in Computer Science, vol 7082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24870-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24870-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24869-6

  • Online ISBN: 978-3-642-24870-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics