Abstract
Digital in-line holography is a microscopy technique which got an increasing attention over the last few years in the fields of microbiology, medicine and physics, as it provides an efficient way of measuring 3D microscopic data over time. In this paper, we present a complete system for the automatic analysis of digital in-line holographic data; we detect the 3D positions of the microorganisms, compute their trajectories over time and finally classify these trajectories according to their motion patterns. Tracking is performed using a robust method which evolves from the Hungarian bipartite weighted graph matching algorithm and allows us to deal with newly entering and leaving particles and compensate for missing data and outliers. In order to fully understand the behavior of the microorganisms, we make use of Hidden Markov Models (HMMs) to classify four different motion patterns of a microorganism and to separate multiple patterns occurring within a trajectory. We present a complete set of experiments which show that our tracking method has an accuracy between 76% and 91%, compared to ground truth data. The obtained classification rates on four full sequences (2500 frames) range between 83.5% and 100%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ginger, M., Portman, N., McKean, P.: Swimming with protists: perception, motility and flagellum assembly. Nature Reviews Microbiology 6(11), 838–850 (2008)
Stoodley, P., Sauer, K., Davies, D., Costerton, J.: Biofilms as complex differentiated communities. Annual Review of Microbiology 56, 187–209 (2002)
Heydt, M., Rosenhahn, A., Grunze, M., Pettitt, M., Callow, M.E., Callow, J.A.: Digital in-line holography as a 3d tool to study motile marine organisms during their exploration of surfaces. The Journal of Adhesion 83(5), 417–430 (2007)
Rosenhahn, A., Ederth, T., Pettitt, M.: Advanced nanostructures for the control of biofouling: The fp6 eu integrated project ambio. Biointerphases 3(1), IR1–IR5 (2008)
Frymier, P., Ford, R., Berg, H., Cummings, P.: 3d tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. U.S.A. 92(13), 6195–6199 (1995)
Baba, S., Inomata, S., Ooya, M., Mogami, Y., Izumikurotani, A.: 3-dimensional recording and measurement of swimming paths of microorganisms with 2 synchronized monochrome cameras. Review of Scientific Instruments 62(2), 540–541 (1991)
Weeks, E., Crocker, J., Levitt, A., Schofield, A., Weitz, D.: 3d direct imaging of structural relaxation near the colloidal glass transition. Science 287(5452), 627–631 (2000)
Li, K., Miller, E., Chen, M., Kanade, T., Weiss, L., Campbell, P.: Cell population tracking and lineage construction with spatiotemporal context. Medical Image Analysis 12(5), 546–566 (2008)
Miura, K.: Tracking movement in cell biology. Microscopy Techniques, 267–295 (2005)
Tsechpenakis, G., Bianchi, L., Metaxas, D., Driscoll, M.: A novel computation approach for simultaneous tracking and feature extraction of c. elegans populations in fluid environments. IEEE Transactions on Biomedical Engineering 55(5), 1539–1549 (2008)
Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle filtering for tracking a variable number of interacting targets. TPAMI (2005)
Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking - linking identities using bayesian network inference. In: CVPR (2006)
Yang, M., Yu, T., Wu, Y.: Game-theoretic multiple target tracking. In: ICCV (2007)
Betke, M., Hirsh, D., Bagchi, A., Hristov, N., Makris, N., Kunz, T.: Tracking large variable number of objects in clutter. In: CVPR (2007)
Lu, J., Fugal, J., Nordsiek, H., Saw, E., Shaw, R., Yang, W.: Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J. Phys. 10 (2008)
Berg, H.: Random walks in biology. Princeton University Press, Princeton (1993)
Hoyle, D., Rattay, M.: Pca learning for sparse high-dimensional data. Europhysics Letters 62(1) (2003)
Wang, X., Grimson, E.: Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In: CVPR (2008)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–442 (2004)
Sbalzariniy, I., Theriot, J., Koumoutsakos, P.: Machine learning for biological trajectory classification applications. Center for Turbulence Research, 305–316 (2002)
Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2) (1989)
Chen, M., Kundu, A., Zhou, J.: Off-line handwritten word recognition using a hidden markov model type stochastic network. TPAMI 16 (1994)
Nefian, A., Hayes, M.H.: Hidden markov models for face recognition. In: ICASSP (1998)
Yamato, J., Ohya, J., Ishii, K.: Recognizing human action in time-sequential images using hidden markov model. In: CVPR (1992)
Brand, M., Kettnaker, V.: Discovery and segmentation of activities in video. TPAMI 22(8), 844–851 (2000)
Leal-Taixé, L., Heydt, M., Rosenhahn, A., Rosenhahn, B.: Automatic tracking of swimming microorganisms in 4d digital in-line holography data. In: IEEE WMVC (2009)
Leal-Taixé, L., Heydt, M., Weisse, S., Rosenhahn, A., Rosenhahn, B.: Classification of swimming microorganisms motion patterns in 4D digital in-line holography data. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 283–292. Springer, Heidelberg (2010)
Gabor, D.: A new microscopic principle. Nature 161(8), 777 (1948)
Xu, W., Jericho, M., Meinertzhagen, I., Kreuzer, H.: Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001)
Raupach, S., Vossing, H., Curtius, J., Borrman, S.: Digital crossed-beam holography for in situ imaging of athmospheric particles. J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006)
Fugal, J., Schulz, T., Shaw, R.: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol. 20, 75501 (2009)
Heydt, M., Divós, P., Grunze, M., Rosenhahn, A.: Analysis of holographic microscopy data to quantitatively investigate three dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur. Phys. J. E: Soft Matter and Biological Physics (2009)
Garcia-Sucerquia, J., Xu, W., Jericho, S., Jericho, M.H., Tamblyn, I., Kreuzer, H.: Digital in-line holography: 4d imaging and tracking of microstructures and organisms in microfluidics and biology. In: Proc. SPIE, vol. 6026, pp. 267–275 (2006)
Lewis, N.I., Xu, W., Jericho, S., Kreuzer, H., Jericho, M., Cembella, A.: Swimming speed of three species of alexandrium (dinophyceae) as determined by digital in-line holography. Phycologia 45(1), 61–70 (2006)
Sheng, J., Malkiel, E., Katz, J., Adolf, J., Belas, R., Place, A.: Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007)
Sheng, J., Malkiel, E., Katz, J., Adolf, J., Place, A.: A dinoflagellate exploits toxins to immobilize prey prior to ingestion. Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010)
Sun, H., Hendry, D., Player, M., Watson, J.: In situ underwater electronic holographic camera for studies of plankton. IEE Journal of Oceanic Engineering 32(2), 373–382 (2007)
Lindeberg, T.: Scale-space theory in computer vision. Springer, Heidelberg (1994)
Kuhn, H.: The hungarian method for the assignment problem. Nav. Res. Logist. 2, 83–87 (1955)
Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)
Pilgrim, R.: Munkres’ assignment algorithm; modified for rectangular matrices. Course Notes, Murray State University, http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
Masuda, N., Ito, T., Kayama, K., Kono, H., Satake, S., Kunugi, T., Sato, K.: Special purpose computer for digital holographic particle tracking velocimetry. Optics Express 14, 587–592 (2006)
Iken, K., Amsler, C., Greer, S., McClintock, J.: Qualitative and quantitative studies of the swimming behaviour of hincksia irregularis (phaeophyceae) spores: ecological implications and parameters for quantitative swimming assays. Phycologia 40, 359–366 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Leal-Taixé, L., Heydt, M., Rosenhahn, A., Rosenhahn, B. (2011). Understanding What we Cannot See: Automatic Analysis of 4D Digital In-Line Holographic Microscopy Data. In: Cremers, D., Magnor, M., Oswald, M.R., Zelnik-Manor, L. (eds) Video Processing and Computational Video. Lecture Notes in Computer Science, vol 7082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24870-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-24870-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24869-6
Online ISBN: 978-3-642-24870-2
eBook Packages: Computer ScienceComputer Science (R0)