Skip to main content

Learning the Parameters of a Multiple Criteria Sorting Method

  • Conference paper
Algorithmic Decision Theory (ADT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6992))

Included in the following conference series:

  • 1218 Accesses

Abstract

Multicriteria sorting methods aim at assigning alternatives to one of the predefined ordered categories. We consider a sorting method in which categories are defined by profiles separating consecutive categories. An alternative a is assigned to the lowest category for which a is at least as good as the lower profile of this category, for a majority of weighted criteria. This method, that we call MR-Sort, corresponds to a simplified version of ELECTRE Tri. To elicit the values for the profiles and weights, we consider a learning procedure. This procedure relies on a set of known assignment examples to find parameters compatible with these assignments. This is done using mathematical programming techniques.

The focus of this study is experimental. In order to test the mathematical formulation and the parameters learning method, we generate random samples of simulated alternatives. We perform experiments in view of answering the following questions: (a) assuming the learning set is generated using a MR-Sort model, is the learning method able to restore the original sorting model? (b) is the learning method able to do so even when the learning set contains errors? (c) is MR-Sort model able to represent a learning set generated with another sorting method, i.e. can the models be discriminated on an empirical basis?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bouyssou, D., Marchant, T.: An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of two categories. European Journal of Operational Research 178(1), 217–245 (2007)

    Article  Google Scholar 

  2. Bouyssou, D., Marchant, T.: An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories. European Journal of Operational Research 178(1), 246–276 (2007)

    Article  Google Scholar 

  3. Bouyssou, D., Marchant, T., Pirlot, M., Tsoukiàs, A., Vincke, P.: Evaluation and decision models with multiple criteria: Stepping stones for the analyst, Boston. International Series in Operations Research and Management Science, vol. 86 (2006)

    Google Scholar 

  4. Cailloux, O., Meyer, P., Mousseau, V.: Eliciting Electre Tri category limits for a group of decision makers. Tech. rep., Laboratoire Génie Industriel, Ecole Centrale Paris (June 2011), Cahiers de recherche (2011-09)

    Google Scholar 

  5. Devaud, J., Groussaud, G., Jacquet-Lagrèze, E.: UTADIS: Une méthode de construction de fonctions d’utilité additives rendant compte de jugements globaux. In: European Working Group on MCDA, Bochum, Germany (1980)

    Google Scholar 

  6. Dias, L., Mousseau, V.: Inferring ELECTRE’s veto-related parameters from outranking examples. European Journal of Operational Research 170(1), 172–191 (2006)

    Article  Google Scholar 

  7. Greco, S., Kadziński, M., Mousseau, V., Słowiński, R.: ELECTRE-GKMS: Robust ordinal regression for outranking methods. European Journal of Operational Research 214(10), 118–135 (2011)

    Article  MathSciNet  Google Scholar 

  8. Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. European Journal of Operational Research 191(2), 415–435 (2008)

    Article  MathSciNet  Google Scholar 

  9. Greco, S., Mousseau, V., Słowiński, R.: Multiple criteria sorting with a set of additive value functions. European Journal of Operational Research 207(3), 1455–1470 (2010)

    Article  MathSciNet  Google Scholar 

  10. Leroy, A.: Apprentissage des paramètres d’une méthode multicritère de tri ordonné, Master Thesis, Université de Mons, Faculté Polytechnique (2010)

    Google Scholar 

  11. Mousseau, V., Figueira, J., Naux, J.: Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results. European Journal of Operational Research 130(2), 263–275 (2001)

    Article  Google Scholar 

  12. Mousseau, V., Figueira, J., Naux, J.: Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results. European Journal of Operational Research 130(2), 263–275 (2001)

    Article  Google Scholar 

  13. Mousseau, V., Slowinski, R.: Inferring an ELECTRE TRI model from assignment examples. Journal of Global Optimization 12(2), 157–174 (1998)

    Article  MathSciNet  Google Scholar 

  14. Ngo The, A., Mousseau, V.: Using Assignment Examples to Infer Category Limits for the ELECTRE TRI Method. Journal of Multiple Criteria Decision Analysis 11(1), 29–43 (2002)

    Article  Google Scholar 

  15. Pirlot, M., Schmitz, H., Meyer, P.: An empirical comparison of the expressiveness of the additive value function and the Choquet integral models for representing rankings. In: 25th Mini-EURO Conference Uncertainty and Robustness in Planning and Decision Making, URPDM 2010 (2010)

    Google Scholar 

  16. Roy, B., Bouyssou, D.: Aide multicritère à la décision: méthodes et cas. Economica Paris, Paris (1993)

    MATH  Google Scholar 

  17. Zopounidis, C., Doumpos, M.: PREFDIS: a multicriteria decision support system for sorting decision problems. Computers & Operations Research 27(7-8), 779–797 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leroy, A., Mousseau, V., Pirlot, M. (2011). Learning the Parameters of a Multiple Criteria Sorting Method. In: Brafman, R.I., Roberts, F.S., Tsoukiàs, A. (eds) Algorithmic Decision Theory. ADT 2011. Lecture Notes in Computer Science(), vol 6992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24873-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24873-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24872-6

  • Online ISBN: 978-3-642-24873-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics