Skip to main content

Valuations of Weighted Automata: Doing It in a Rational Way

  • Chapter
Algebraic Foundations in Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7020))

Abstract

We study Kleene’s theorem about the equivalence of automata and expressions in a quantitative setting both for finite and infinite words. The quantities originate from valuation monoids and ω-indexed valuation monoids which cover not only semirings but also cost models like average cost, long-run peaks of resource consumption, or discounting sums of rewards. For finite words we deduce the characterization of weighted automata by regular weighted expressions directly from Kleene’s theorem. For infinite words we define three different behaviors of weighted Büchi automata depending on the way runs are evaluated. Depending on the properties of the underlying ω-indexed valuation monoid, we explore the connections between the different behaviors of weighted Büchi automata and ω-regular weighted expressions. Again, we use classical results on ω-languages to derive results in the quantitative setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Inform. Process. Lett. 24(1), 1–4 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, A.: Rational ω-languages are non-ambiguous. Theor. Comput. Sci. 26, 221–223 (1983)

    Article  MATH  Google Scholar 

  3. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Comput. Sci. 18, 115–148 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bozapalidis, S., Grammatikopoulou, A.: Recognizable picture series. J. Autom. Lang. Comb. 10(2/3), 159–183 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Büchi, J.R.: On a decision method in restricted second order arithmetics. In: Nagel, E., et al. (eds.) Proc. Intern. Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press, Stanford (1962)

    Google Scholar 

  6. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297, 37–81 (2003)

    Article  MATH  Google Scholar 

  7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 3–13. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quantitative languages. In: LICS 2009, pp. 199–208. IEEE Comp. Soc. Press, Los Alamitos (2009)

    Google Scholar 

  10. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Droste, M., Gastin, P.: The Kleene-Schützenberger theorem for formal power series in partially commuting variables. Inform. and Comput. 153, 47–80 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over valuation monoids and their characterizations by weighted logics. In: Kuich, W., Rahonis, G. (eds.) Bozapalidis Festschrift. LNCS, vol. 7020, pp. 309–346. Springer, Heidelberg (2011)

    Google Scholar 

  13. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  14. Droste, M., Kuske, D.: Skew and infinitary formal power series. Theor. Comput. Sci. 366, 199–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Droste, M., Püschmann, U.: Weighted Büchi automata with order-complete weights. Internat. J. Algebra Comput. 17(2), 235–260 (2007)

    Article  MATH  Google Scholar 

  16. Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting. Theor. Comput. Sci. 410, 3481–3494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Droste, M., Sakarovitch, J., Vogler, H.: Weighted automata with discounting. Inform. Process. Lett. 108, 23–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Droste, M., Stüber, T., Vogler, H.: Weighted finite automata over strong bimonoids. Inform. Sci. 180, 156–166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Droste, M., Gastin, P.: On aperiodic and star-free formal power series in partially commuting variables. Theory Comput. Syst. 42, 608–631 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 537–548. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Droste, M., Meinecke, I.: Regular expressions on average and in the long run. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 211–221. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoids. Int. J. Foundat. Comp. Sci. (in print, 2011)

    Google Scholar 

  23. Droste, M., Vogler, H.: Kleene and Büchi theorems for weighted automata and multi-valued logics over arbitrary bounded lattices. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 160–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, London (1974)

    MATH  Google Scholar 

  25. Ésik, Z., Kuich, W.: A semiring-semimodule generalization of ω-regular languages I+II. J. Autom. Lang. Comb. 10, 203–264 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Ésik, Z., Kuich, W.: On iteration semiring-semimodule pairs. Semigroup Forum 75, 129–159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ésik, Z., Kuich, W.: Finite Automata. In: Droste, et al. (eds.) [13], ch. 3 (2009)

    Google Scholar 

  28. Fichtner, I., Kuske, D., Meinecke, I.: Traces, Series-Parallel Posets, and Pictures: A Weighted Study. In: Droste, et al. (eds.) [13], ch. 10 (2009)

    Google Scholar 

  29. Fülöp, Z., Vogler, H.: Weighted Tree Automata and Tree Transducers. In: Droste, et al. (eds.) [13], vol. ch. 9 (2009)

    Google Scholar 

  30. Hofmann, M., Lange, M.: Automatentheorie und Logik. Springer, Heidelberg (2011)

    Book  Google Scholar 

  31. Kleene, S.: Representations of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956)

    Google Scholar 

  32. Kuich, W.: On skew formal power series. In: Bozapalidis, S., Kalampakas, A., Rahonis, G. (eds.) CAI 2005, pp. 7–30. Aristotle University of Thessaloniki Press (2005)

    Google Scholar 

  33. Kuske, D., Meinecke, I.: Branching automata with costs – a way of reflecting parallelism with costs. Theor. Comput. Sci. 328, 53–75 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuske, D.: Note: Schützenberger’s theorem on formal power series follows from Kleene’s theorem. Theor. Comput. Sci. 401, 243–248 (2008)

    Article  MATH  Google Scholar 

  35. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity. Theor. Comput. Sci. 332, 141–177 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mäurer, I.: Characterizations of recognizable picture series. Theor. Comput. Sci. 374, 214–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rahonis, G.: Infinite fuzzy computations. Fuzzy Sets and Systems 153(2), 275–288 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sakarovitch, J.: Rational and Recognisable Power Series. In: Droste, et al. (eds.) [13], ch. 4 (2009)

    Google Scholar 

  39. Schützenberger, M.: On the definition of a family of automata. Inform. and Control 4, 245–270 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meinecke, I. (2011). Valuations of Weighted Automata: Doing It in a Rational Way. In: Kuich, W., Rahonis, G. (eds) Algebraic Foundations in Computer Science. Lecture Notes in Computer Science, vol 7020. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24897-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24897-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24896-2

  • Online ISBN: 978-3-642-24897-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics