Abstract
Picture walking automata were introduced by M. Blum and C. Hewitt in 1967 as a generalization of one-dimensional two-way finite automata to recognize pictures, or two-dimensional words. Several variants have been investigated since then, including deterministic, non-deterministic and alternating transition rules; four-, three- and two-way movements; single- and multi-headed variants; automata that must stay inside the input picture, or that may move outside. We survey results that compare the recognition power of different variants, consider their basic closure properties and study decidability questions.
Research supported by the Academy of Finland Grant 131558.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: FOCS, pp. 155–160. IEEE, Los Alamitos (1967)
Giammarresi, D., Restivo, A.: Two-dimensional languages, pp. 215–267. Springer-Verlag New York, Inc., New York (1997), http://portal.acm.org/citation.cfm?id=267871.267875
Ibarra, O.H., Jiang, T., Wang, H.: Some results concerning 2-d on-line tessellation acceptors and 2-d alternating finite automata. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 221–230. Springer, Heidelberg (1991)
Inoue, K., Takanami, I.: Three-way tape-bounded two-dimensional turing machines. Inf. Sci. 17(3), 195–220 (1979)
Inoue, K., Takanami, I.: A note on decision problems for three-way two-dimensional finite automata. Inf. Process. Lett. 10(4/5), 245–248 (1980)
Inoue, K., Takanami, I.: A survey of two-dimensional automata theory. Inf. Sci. 55(1-3), 99–121 (1991)
Inoue, K., Takanami, I., Taniguchi, H.: Two-dimensional alternating turing machines. Theor. Comput. Sci. 27, 61–83 (1983)
Ito, A., Inoue, K., Takanami, I.: A note on three-way two-dimensional alternating turing machines. Inf. Sci. 45(1), 1–22 (1988)
Ito, A., Inoue, K., Takanami, I.: Deterministic two-dimensional on-line tessellation acceptors are equivalent to two-way two-dimensional alternating finite automata through 180-rotation. Theor. Comput. Sci. 66(3), 273–287 (1989)
Ito, A., Inoue, K., Takanami, I., Taniguchi, H.: Two-dimensional alternating turing machines with only universal states. Information and Control 55(1-3), 193–221 (1982)
Kari, J., Moore, C.: New results on alternating and non-deterministic two-dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)
Kari, J., Moore, C.: Rectangles and squares recognized by two-dimensional automata. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 134–144. Springer, Heidelberg (2004)
Kinber, E.B.: Three-way automata on rectangular tapes over a one-letter alphabet. Inf. Sci. 35(1), 61–77 (1985)
Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack automata. SIAM J. Comput. 13(1), 135–155 (1984)
Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns. Journal of Statistical Physics 91, 909–951 (1998), http://dx.doi.org/10.1023/A:1023027932419
Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Englewood Cliffs (1967)
Okazaki, T., Zhang, L., Inoue, K., Ito, A., Wang, Y.: A note on two-dimensional probabilistic finite automata. Inf. Sci. 110(3-4), 303–314 (1998)
Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
Petersen, H.: Some results concerning two-dimensional turing machines and finite automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 374–382. Springer, Heidelberg (1995)
Reinhardt, K.: On some recognizable picture-languages. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 760–770. Springer, Heidelberg (1998)
Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Academic Press, Inc., Orlando (1979)
Salo, V.: Classes of picture languages defined by tiling systems, automata and closure properties. Master’s thesis, University of Turku (2011)
Sipser, M.: Halting space-bounded computations. In: FOCS, pp. 73–74. IEEE, Los Alamitos (1978)
Szepietowski, A.: Some remarks on two-dimensional finite automata. Inf. Sci. 63(1-2), 183–189 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kari, J., Salo, V. (2011). A Survey on Picture-Walking Automata. In: Kuich, W., Rahonis, G. (eds) Algebraic Foundations in Computer Science. Lecture Notes in Computer Science, vol 7020. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24897-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-24897-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24896-2
Online ISBN: 978-3-642-24897-9
eBook Packages: Computer ScienceComputer Science (R0)