Abstract
Neuro-inspired processing tries to imitate the nervous system and may resolve complex problems, such as visual recognition. The spike-based philosophy based on the Address-Event-Representation (AER) is a neuromorphic interchip communication protocol that allows for massive connectivity between neurons. Some of the AER-based systems can achieve very high performances in real-time applications. This philosophy is very different from standard image processing, which considers the visual information as a succession of frames. These frames need to be processed in order to extract a result. This usually requires very expensive operations and high computing resource consumption. Due to its relative youth, nowadays AER systems are short of cost-effective tools like emulators, simulators, testers, debuggers, etc. In this paper the first results of a CUDA-based tool focused on the functional processing of AER spikes is presented, with the aim of helping in the design and testing of filters and buses management of these systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Drubach, D.: The Brain Explained. Prentice-Hall, New Jersey (2000)
Lee, J.: A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images. IEEE Trans. Systems, Man and Cybernetics SMC-13, 85–89 (1983)
Crimmins, T.: Geometric Filter for Speckle Reduction. Applied Optics 24 (1985)
Linares-Barranco, A., et al.: On the AER Convolution Processors for FPGA. In: ISCAS 2010, Paris, France (2010)
Sivilotti, M.: Wiring Considerations in analog VLSI Systems with Application to Field-Programmable Networks, Ph.D. Thesis, California Institute of Technology (1991)
Boahen, K.A.: Communicating Neuronal Ensembles between Neuromorphic Chips. In: Neuromorphic Systems. Kluwer Academic Publishers, Boston (1998)
Mahowald, M.: VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and Function. Ph.D. Thesis. California Institute of Technology Pasadena, California (1992)
Linares-Barranco, A., Jimenez-Moreno, G., Civit-Ballcels, A., Linares-Barranco, B.: On Algorithmic Rate-Coded AER Generation. IEEE Transaction on Neural Networks (2006)
Paz, R., Gomez-Rodriguez, F., Rodríguez, M.A., Linares-Barranco, A., Jimenez, G., Civit, A.: Test Infrastructure for Address-Event-Representation Communications. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 518–526. Springer, Heidelberg (2005)
Serrano, et al.: A Neuromorphic Cortical-Layer Microchip for Spike-Based Event Processing Vission Systems. IEEE Trans. on Circuits and Systems Part 1 53(12), 2548–2566 (2006)
Cope, B., Cheung, P.Y.K., Luk, W., Witt, S.: Have GPUs made FPGAs redundant in the field of video processing? In: IEEE International Conference on Field-Programmable Technology, pp. 111–118 (2005)
Farabet, C., et al.: CNP: An FPGA-based Processor for Convolutional Networks. In: International Conference on Field Programmable Logic and Applications (2009)
Farriga, N., et al.: Design of a Real-Time Face Detection Parallel Architecture Using High-Level Synthesis. EURASIP Journal on Embedded Systems (2008)
Domínguez-Morales, M., et al.: Performance study of synthetic AER generation on CPUs for Real-Time Video based on Spikes. In: SPECTS 2009, Istambul, Turkey (2009)
Nageswaran, J.M., Dutt, N., Wang, Y., Delbrueck, T.: Computing spike-based convolutions on GPUs. In: IEEE International Symposium on Circuits and Systems (ISCAS 2009), Taipei, Taiwan, pp. 1917–1920 (2009)
Goodman, D.: Code Generation: A Strategy for Neural Network Simulators. Neuroinformatics 8.3, 183–196 (2010), Issn: 1539-2791
Compute Visual Profiler User Guide, http://developer.nvidia.com/
NVIDIA CUDA Programming Guide, Version 2.1, http://developer.nvidia.com/
NVIDIA Corporation. CUDA SDK Software development kit, http://developer.nvidia.com/
Paz-Vicente, R., et al.: Synthetic retina for AER systems development. In: IEEE/ACS International Conference on Computer Systems and Applications, AICCSA, pp. 907–912 (2009)
Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU Computing. Proceedings of the IEEE 96(5) (May 2008)
Indiveri, G., et al.: Neuromorphic Silicon Neurons. Frontiers in Neuromorphic Engineering 5, 7 (2011)
Halfhill, T.R.: Parallel Processing With CUDA. Microprocessor The Insider’s Guide To Microprocessor Hardware (2008)
Thorpe, S., et al.: Spike-based strategies for rapid processing. Neural Networks 14(6-7), 715–725 (2001)
Pérez-Carrasco, J.-A., Serrano-Gotarredona, C., Acha-Piñero, B., Serrano-Gotarredona, T., Linares-Barranco, B.: Advanced Vision Processing Systems: Spike-Based Simulation and Processing. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 640–651. Springer, Heidelberg (2009)
Montero-Gonzalez, R.J., Morgado-Estevez, A., Linares-Barranco, A., Linares-Barranco, B., Perez-Peña, F., Perez-Carrasco, J.A., Jimenez-Fernandez, A.: Performance Study of Software AER-Based Convolutions on a Parallel Supercomputer. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 141–148. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
López-Torres, M.R., Diaz-del-Rio, F., Domínguez-Morales, M., Jimenez-Moreno, G., Linares-Barranco, A. (2011). AER Spiking Neuron Computation on GPUs: The Frame-to-AER Generation. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-24955-6_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24954-9
Online ISBN: 978-3-642-24955-6
eBook Packages: Computer ScienceComputer Science (R0)