Abstract
Accuracy of disease classification has always been a challenging goal of bioinformatics research. Microarray-based classification of disease states relies on the use of gene expression profiles of patients to identify those that have profiles differing from the control group. A number of methods have been proposed to identify diagnostic markers that can accurately discriminate between different classes of a disease. Pathway-based microarray analysis for disease classification can help improving the classification accuracy. The experimental results showed that the use of pathway activities inferred by the negatively correlated feature sets (NCFS) based methods achieved higher accuracy in disease classification than other different pathway-based feature selection methods for two breast cancer metastasis datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Young, R.A.: Biomedical Discovery with DNA Arrays. Cell 102, 9–15 (2000)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gassenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)
Berns, A.: Cancer: Gene Expression Diagnosis. Nature 403, 491–492 (2000)
Su, A.I., Welsh, J.B., Sapinoso, L.M., Kern, S.G., Dimitrov, P., Lapp, H., Schultz, P.G., Powell, S.M., Moskaluk, C.A., Frierson Jr., H.F., Hampton, G.M.: Molecular Classification of Human Carcinomas by Use of Gene Expression Signatures. Cancer Res. 61, 7388–7393 (2001)
Lu, Y., Han, J.: Cancer Classification Using Gene Expression Data. Inform. Systems 28, 243–268 (2008)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning 46, 389–422 (2002)
Hamadeh, H.K., Bushel, P.R., Jayadev, S., DiSorbo, O., Bennett, L., Li, L., Tennant, R., Stoll, R., Barrett, J.C., Paules, R.S., Blanchard, K., Afshari, C.A.: Prediction of Compound Signature Using High Density Gene Expression Profiling. Toxicological Sciences 67, 232–240 (2002)
Dash, M., Liu, H.: Feature Selection for Classification. Intelligent Data Analysis 1, 131–156 (1997)
Guo, Z., Zhang, T., Li, X., Wang, Q., Xu, J., Yu, H., Zhu, J., Wang, H., Wang, C., Topol, E.J., Wang, Q., Rao, S.: Towards Precise Classification of Cancers Based on Robust Gene Functional Expression Profiles. BMC Bioinformatics 6 (2005)
Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T., Lee, D.: Inferring Pathway Activity Toward Precise Disease Classification. PLoS Comput. Biol. 4, e1000217 (2008)
Sootanan, P., Prom-on, S., Meechai, A., Chan, J.H.: Pathway-Based Microarray Analysis for Robust Disease Classification. Neural Comput. & Applic. (2011), doi:10.1007/s00521-011-0662-y
Chan, J.H., Sootanan, P., Larpeampaisarl, P.: Feature Selection of Pathway markers for Microarray-Based Disease Classification Using Negatively Correlated Feature Sets. In: 2011 International Joint Conference on Neural Networks, pp. 3293–3299. IEEE Press, New York (2011)
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for Linking Genomes to Life and the Environment. Nucleic Acids Res. 36, D480–D484 (2008)
Pawitan, Y., Bjohle, J., Amler, L., Borg, A.L., Egyhazi, S., Hall, P., Han, X., Holmberg, L., Huang, F., Klaar, S., Liu, E.T., Miller, L., Nordgren, H., Ploner, A., Sandelin, K., Shaw, P.M., Smeds, J., Skoog, L., Wedren, S., Bergh, J.: Gene Expression Profiling Spares Early Breast Cancer Patients from Adjuvant Therapy: Derived and Validated in Two Population-Based Cohorts. Breast Cancer Res. 7, R953–R964 (2005)
Wang, Y., Klijn, J.G., Zhang, Y., Sieuwerts, A.M., Look, M.P., Yang, F., Talantov, D., Timmermans, M., Meijer-van Gelder, M.E., Yu, J., Jatkoe, T., Berns, E.M.J.J., Atkins, D., Foekens, J.A.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005)
Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucl. Acids Res. 30, 207–210 (2002)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11 (2009)
Liao, J.G., Chin, K.V.: Logistic Regression for Disease Classification using Microarray Data: Model Selection in a Large p and Small n Case. Bioinformatics 23(15), 1945–1951 (2007)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sootanan, P., Meechai, A., Prom-on, S., Chan, J.H. (2011). Pathway-Based Microarray Analysis with Negatively Correlated Feature Sets for Disease Classification. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_80
Download citation
DOI: https://doi.org/10.1007/978-3-642-24955-6_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24954-9
Online ISBN: 978-3-642-24955-6
eBook Packages: Computer ScienceComputer Science (R0)