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Abstract. We propose and analyze new fast feature weighting algorithms based
on different types of feature ranking. Feature weighting may be much faster than
feature selection because there is no need to find cut-threshold in the raking.
Presented weighting schemes may be combined with several distance based clas-
sifiers like SVM, kNN or RBF network (and not only). Results shows that such
method can be successfully used with classifiers.
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1 Introduction

Data used in classification problems consists of instances which typically are described
by features (sometimes called attributes). The feature relevance (or irrelevance) dif-
fers between data benchmarks. Sometimes the relevance depends even on the classifier
model, not only on data. Also the magnitude of feature may provide stronger or weaker
influence on the usage of a given metric. What’s more the values of feature may be
represented in different units (keeping theoretically the same information) what may
provide another source of problems (for example milligrams, kilograms, erythrocytes)
for classifier learning process. This shows that feature selection must not be enough
to solve a hidden problem. Obligatory usage of data standardization also must not be
equivalent to the best way which can be done at all. It may happen that subset of features
are for example counters of word frequencies. Then in case of normal data standardiza-
tion will loose (almost) completely the information which was in a subset of features.

This is why we propose and investigate several methods of automated weighting
of features instead of feature selection. Additional advantage of feature weighting over
feature selection is that in case of feature selection there is not only the problem of
choosing the ranking method but also of choosing the cut-threshold which must be val-
idated what generates computational costs which are not in case of feature weighting.
But not all feature weighting algorithms are really fast. The feature weightings which
are wrappers (so adjust weights and validate in a long loop) [21, 18, 1, 19, 17] are rather
slow (even slower than feature selection), however may be accurate. This provided us
to propose several feature weighting methods based on feature ranking methods. Pre-
viously rankings were used to build feature weighting in [9] were values of mutual
information were used directly as weights and in [24] used χ2 distribution values for
weighting. In this article we also present selection of appropriate weighting schemes
which are used on values of rankings.
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Below section presents chosen feature ranking methods which will be combined
with designed weighting schemes that are described in the next section (3). Testing
methodology and results of analysis of weighting methods are presented in section 4.

2 Selection of rankings

The feature ranking selection is composed of methods which computation costs are rel-
atively small. The computation costs of ranking should never exceed the computation
costs of training and testing of final classifier (the kNN, SVM or another one) on aver-
age data stream. To make the tests more trustful we have selected ranking methods of
different types as in [7]: based on correlation, based on information theory, based on
decision trees and based on distance between probability distributions.

Some of the ranking methods are supervised and some are not. However all of them
shown here are supervised. Computation of ranking values for features may be inde-
pendent or dependent. What means that computation of next rank value may (but must
not) depend on previously computed ranking values. For example Pearson correlation
coefficient is independent while ranking based on decision trees or Battiti ranking are
dependant.

Feature ranking may assign high values for relevant features and small for irrelevant
ones or vice versa. First type will be called positive feature ranking and second negative
feature ranking. Depending on this type the method of weighting will change its tactic.

For further descriptions assume that the data is represented by a matrix X which
has m rows (the instances or vectors) and n columns called features. Let the x mean a
single instance, xi being i-th instance of X . And let’s X j means the j-th feature of X . In
addition to X we have vector c of class labels.

Below we describe shortly selected ranking methods.
Pearson correlation coefficient ranking (CC): The Pearson’s correlation coefficient:

CC(X j,c) =

[
m

∑
i=1

(x j
i − X̄ j)(ci− c̄)

]/
(σX j ·σc) (1)

is really useful as feature selection [14, 12]. X̄ j and σX j means average value and stan-
dard deviation of j-th feature (and the same for vector c of class labels). Indeed the
ranking values are absolute values of CC:

JCC(X j) = |CC(X j,c)| (2)

because correlation equal to −1 is indeed as informative as value 1. This ranking is
simple to implement and its complexity is low O(mn). However some difficulties arise
when used for nominal features (with more then 2 values).
Fisher coefficient: Next ranking is based on the idea of Fisher linear discriminant and
is represented as coefficient:

JFSC(X j) =
[
X̄ j,1− X̄ j,2]/ [σX j,1 +σX j,2 ] , (3)

where indices j,1 and j,2 mean that average (or standard deviation) is defined for j-
th feature but only for either vectors of first or second class respectively. Performance
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of feature selection using Fisher coefficient was studied in [11]. This criterion may be
simply extended to multiclass problems.
χ2 coefficient: The last ranking in the group of correlation based method is the χ2

coefficient:

Jχ2(X j) =
m

∑
i=1

l

∑
k=1

[
p(X j = x j

i ,C = ck)− p(X j = x j
i )p(C = ck)

]2

p(X j = x j
i )p(C = ck)

. (4)

Using this method in context of feature selection was discussed in [8]. This method
was also proposed for feature weighting with the kNN classifier in [24].

2.1 Information theory based feature rankings

Mutual information ranking (MI): Shannon [23] described the concept of entropy
and mutual information. Now the concept of entropy and mutual information is widely
used in several domains. The entropy in context of feature may be defined by:

H(X j) =−
m

∑
i=1

p(X j = x j
i ) log2 p(X j = x j

i ) (5)

and in similar way for class vector: H(c) =−∑
m
i=1 p(C = ci) log2 p(C = ci).

The mutual information (MI) may be used as a base of feature ranking:

JMI(X j) = I(X j,c) = H(X j)+H(c)−H(X j,c), (6)

where H(X j,c) is joint entropy. Mutual information was investigated as ranking method
several times [3, 14, 8, 13, 16]. The MI was also used for feature weighting in [9].
Asymmetric Dependency Coefficient (ADC) is defined as mutual information nor-
malized by entropy of classes:

JADC(X j) = I(X j,c)/H(c). (7)

These and next criterions which base on MI were investigated in context of feature
ranking in [8, 7].
Normalized Information Gain (US) proposed in [22] is defined by the MI normalized
by the entropy of feature:

JADC(X j) = I(X j,c)/H(X j). (8)

Normalized Information Gain (UH) is the third possibility of normalizing, this time
by the joint entropy of feature and class:

JUH(X j) = I(X j,c)/H(X j,c). (9)

Symmetrical Uncertainty Coefficient (SUC): this time the MI is normalized by the
sum of entropies [15]:

JSUC(X j) = I(X j,c)/(H(X j,c)+H(c)). (10)

It can be simply seen that the normalization is like weight modification factor which
has influence in the order of ranking and in pre-weights for further weighting calcula-
tion.

Except the DML all above MI-based coefficients compose positive rankings.
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2.2 Decision tree rankings

Decision trees may be used in a few ways for feature selection or ranking building. The
simplest way of feature selection is to select features which were used to build the given
decision tree to play the role of the classifier. But it is possible to compose not only a
binary ranking, the criterion used for the tree node selection can be used to build the
ranking.

The selected decision trees are: CART [4], C4.5 [20] and SSV [10]. Each of those
decision trees uses its own split criterion, for example CART use the GINI or SSV use
the separability split value. For using SSV in feature selection please see [11].

The feature ranking is constructed basing on the nodes of decision tree and features
used to build this tree. Each node is assigned to a split point on a given feature which has
appropriate value of the split criterion. These values will be used to compute ranking
according to:

J(X j) = ∑
n∈Q j

split(n), (11)

where Q j is a set of nodes which split point uses feature j, and split(n) is the value of
given split criterion for the node n (depend on tree type). Note that features not used in
tree are not in the ranking and in consequence will have weight 0.

2.3 Feature rankings based on probability distribution distance

Kolmogorov distribution distance (KOL) based ranking was presented in [7]:

JKOL(X j) =
m

∑
i=1

l

∑
k=1

∣∣∣p(X j = x j
i ,C = ck)− p(X j = x j

i )p(C = ck)
∣∣∣ (12)

Jeffreys-Matusita Distance (JM) is defined similarly to the above ranking:

JJM(X j) =
m

∑
i=1

l

∑
k=1

∣∣∣∣√p(X j = x j
i ,C = ck)−

√
p(X j = x j

i )p(C = ck)

∣∣∣∣2 (13)

MIFS ranking. Battiti [3] proposed another ranking which bases on MI. In general it
is defined by:

JMIFS(X j|S) = I((X j,c)|S) = I(X j,c)−β ·∑
s∈S

I(X j,Xs). (14)

This ranking is computed iteratively basing on previously established ranking val-
ues. First, as the best feature, the j-th feature which maximizes I(XJ ,c) (for empty S)
is chosen. Next the set S consists of index of first feature. Now the second winner fea-
ture has to maximize right side of Eq. 14 with the sum over non-empty S. Next ranking
values are computer in the same way.

To eliminate the parameter β Huang et. al [16] proposed a changed version of Eq.14:

JSMI(X j|S) = I(X j,c)−∑
s∈S

[
I(X j,Xs)

H(Xs)
− 1

2 ∑
s′∈S,s′ 6=s

I(X j,Xs′)

H(Xs′)
· I(Xs′ ,Xs)

H(Xs)

]
· I(Xs,c).

(15)
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The computation of JSMI is done in the same way as JMIFS. Please note that com-
putation of JMIFS and JSMI is more complex then computation of previously presented
rankings that base on MI.
Fusion ranking (FUS). Resulting feature rankings may be combined to another rank-
ing in fusion [25]. In experiments we combine six rankings (NMF, NRF, NLF, NSF,
MDF, SRW1) as their sum. However an different operator may replace the sum (me-
dian, max, min). Before calculation of fusion ranking each ranking used in fusion has
to be normalized.

3 Methods of feature weighting for ranking vectors

Direct use of ranking values to feature weighting is sometimes even impossible because
we have positive and negative rankings. However in case of some rankings it is possible
[9, 6, 5]. Also the character of magnitude of ranking values may change significantly
between kinds of ranking methods2. This is why we decided to check performance of a
few weighting schemes while using every single one with each feature ranking method.

Below we propose methods which work in one of two types of weighting schemes:
first use the ranking values to construct the weight vector while second scheme uses the
order of features to compose weight vector.

Let’s assume that we have to weight vector of feature ranking J = [ j1, . . . ,Jn]. Ad-
ditionally define Jmin = mini=1,...,n Ji and Jmax = maxi=1,...,n Ji.
Normalized max filter (NMF) is defined by

WNMF(J) =

{
|J|/Jmax for J+
[Jmax + Jmin−|J|]/Jmax for J−

, (16)

where J is ranking element of J. J+ means that the feature ranking is positive and J−
means negative ranking. After such transformation the weights lie in [Jmin,Jmax,1].
Normalizing Range Filter (NRF) is a bit similar to previous weighting function:

WNRF(J) =

{
(|J|+ Jmin)/(Jmax + Jmin) for J+
(Jmax +2Jmin−|J|)/(Jmax + Jmin) for J−

. (17)

In such case weights will lie in [2Jmin/(Jmax + Jmin),1].
Normalizing Linear Filter (NLF) is another a linear transformation defined by:

WNLF(J) =

{
[1−ε]J+[ε−1]Jmax

Jmax−Jmin
for J+

[ε−1]J+[1−ε]Jmax
Jmax−Jmin

for J−
, (18)

where ε =−(εmax−εmin)vp+εmax depends on feature. Parameters has typically values:
εmin = 0.1 and εmax = 0.9, and p may be 0.25 or 0.5. And v=σJ/J̄ is a variability index.

1 See Eq. 21.
2 Compare sequence 1,2,3,4 with 11,12,13,14 further influence in metric is significantly dif-

ferent
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Normalizing Sigmoid Filter (NSF) is a nonlinear transformation of ranking values:

WNSF(J) =
[
1+ e−[W (J)−0.5] log((1−ε ′)/ε ′)2

]−1
+ ε
′ (19)

where ε ′ = ε/2. This weighting function increases the strength of strong features and
decreases weak features.
Monotonically Decreasing Function (MDF) defines weights basing on the order of
the features, not on the ranking values:

WMDF( j) = elogε·[( j−1)/(n−1)]
log(ns−1)/(n−1) logε τ

(20)

where j is the position of the given feature in order. τ may be 0.5. Roughly it means the
ns/n fraction of features will have weights not greater than tau.
Sequential Ranking Weighting (SRW) is a simple threshold weighting via feature
order:

WSRW ( j) = [n+1− j]/n, (21)

where j is again the position in the order.

4 Testing methodology and results analysis

The test were done on several benchmarks from UCI machine learning repository [2]:
appendicitis, Australian credit approval, balance scale, Wisconsin breast cancer, car
evaluation, churn, flags, glass identification, heart disease, congressional voting records,
ionosphere, iris flowers, sonar, thyroid disease, Telugu vowel, wine.

Each single test configuration of a weighting scheme and a ranking method was
tested using 10 times repeater 10 fold cross-validation (CV). Only the accuracies from
testing parts of CV were used in further test processing. In place of presenting averaged
accuracies over several benchmarks the paired t-tests were used to count how many
times had the given test configuration won, defeated or drawn. t-test is used to compare
efficiency of a classifiers without weighting and with weighting (a selected ranking
method plus selected weighting scheme). For example efficiency of 1NNE classifier
(one nearest neighbour with Euclidean metric) is compared to 1NNE with weighting
by CC ranking and NMF weighting scheme. And this is repeated for each combination
of rankings and weighting schemes. CV tests of different configurations were using the
same random seed to make the test more trustful (it enables the use of paired t-test).

Table 1 presents results averaged for different configurations of k nearest neighbors
kNN and SVM: 1NNE, 5NNE, AutoNNE, SVME, AutoSVME, 1NNM, 5NNM, Au-
toNNM, SVMM, AutoSVMM. Were suffix ‘E’ or ‘M’ means Euclidean or Manhattan
respectively. Prefix ‘auto’ means that kNN chose the ‘k’ automatically or SVM chose
the ‘C’ and spread of Gaussian function automatically.

Tables 1(a)–(c) presents counts of winnings, defeats and draws. Is can be seen that
the best choice of ranking method were US, UH and SUC while the best weighting
schemes were NSF and MDF in average. Smaller number of defeats were obtained for
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KOL and FUS rankings and for NSF and MDF weighting schemes. Over all best con-
figuration is combination of US ranking with NSF weighting scheme. The worst per-
formance characterize feature rankings based on decision trees. Note that the weighting
with a classifier must not be used obligatory. With a help of CV validation it may be sim-
ply verified whether the using of feature weighting method for given problem (data) can
be recommended or not. Table 1(d) presents counts of winnings, defeats and draws per
classification configuration. The highest number of winnings were obtained for SVME,
1NNE, 5NNE. The weighting turned out useless for AutoSVM[E|M]. This means that
weighting does not help in case of internally optimized configurations of SVM. But
note that optimization of SVM is much more costly (around 100 times—costs of grid
validation) than SVM with feature weighting!

Tables 2(a)–(d) describe results for SVME classifier used with all combinations of
weighting as before. Weighting for SVM is very effective even with different rankings
(JM, MI, ADC, US,CHI, SUC or SMI) and with weighting schemes: NSF, NMF, NRF.

5 Summary

Presented feature weighting methods are fast and accurate. In most cases performance
of the classifier may be increased without significant growth of computational costs.
The best weighting methods are not difficult to implement. Some combinations of
ranking and weighting schemes are often better than other, for example combination
of normalized information gain (US) and NSF. Presented feature weighting methods
may compete with slower feature selection or adjustment methods of classifier meta-
parameters (AutokNN or AutoSVM which needs slow parameters tuning). By simple
validation we may decide whether to weight or not to weight features before using the
chosen classifier for given data (problem) keeping the final decision model more accu-
rate.
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40.53% NMF NRF NLF NSF MDF SRW Sum

CC 55 59 53 59 55 52 333
FSC 61 58 63 72 64 64 382
CHI 67 66 78 73 66 72 422
MI 66 70 74 76 67 73 426
ADC 66 70 74 76 67 73 426
US 75 71 69 79 76 71 441
UH 73 71 77 77 71 71 440
DML 58 54 59 58 58 49 336
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CRT 46 46 44 43 66 66 311
C45 46 48 41 42 64 63 304
SSV 50 48 48 48 63 62 319
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FUS 35 33 51 36 50 58 263

Sum 964 899 1008 882 870 957 5580

(b) Cumulative count of defeats

23.14% NMF NRF NLF NSF MDF SRW Sum
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MI 41 38 27 33 41 30 210
ADC 41 38 27 33 41 30 210
US 30 42 33 36 34 29 204
UH 34 36 29 32 38 32 201
DML 61 70 45 56 44 45 321
SUC 37 43 24 34 39 32 209
CRT 22 31 22 28 42 35 180
C45 27 29 33 35 36 34 194
SSV 31 40 30 36 42 38 217
KOL 48 50 42 57 46 42 285
JM 33 38 30 34 36 35 206
SMI 34 33 33 36 34 35 205
FUS 47 54 33 50 42 37 263

Sum 593 660 513 616 627 546 3555

(c) Cumulative count of draws
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(d) Cumulative counts per classifier configuration
Table 1: Cumulative counts over feature ranking methods and feature weighting
schemes (averaged over kNN’s and SVM’s configurations).
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61,26% NMF NRF NLF NSF MDF SRW Sum

CC 9 9 9 11 11 11 60
FSC 9 7 8 9 10 10 53
CHI 10 10 11 11 9 10 61
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ADC 11 11 11 11 9 9 62
US 11 12 10 10 10 9 62
UH 10 11 10 11 9 8 59
DML 8 9 9 9 9 8 52
SUC 11 12 10 10 9 8 60
CRT 10 9 10 9 10 9 57
C45 10 9 9 9 9 8 54
SSV 10 8 9 10 9 10 56
KOL 9 9 10 11 10 9 58
JM 11 11 11 12 10 11 66
SMI 10 10 9 10 10 11 60
FUS 10 11 10 10 10 8 59

Sum 160 159 157 164 153 148 941

(a) Cumulative count of winnings

22.27% NMF NRF NLF NSF MDF SRW Sum
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SSV 5 5 5 5 4 5 29
KOL 2 3 4 3 4 3 19
JM 2 2 4 3 4 4 19
SMI 4 4 3 2 4 3 20
FUS 3 3 4 3 4 3 20

Sum 49 49 64 53 64 63 342

(b) Cumulative count of defeats

16.47% NMF NRF NLF NSF MDF SRW Sum
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C45 0 1 1 1 1 3 7
SSV 1 3 2 1 3 1 11
KOL 5 4 2 2 2 4 19
JM 3 3 1 1 2 1 11
SMI 2 2 4 4 2 2 16
FUS 3 2 2 3 2 5 17

Sum 47 48 35 39 39 45 253

(c) Cumulative count of draws
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Table 2: Cumulative counts over feature ranking methods and feature weighting
schemes for SVM classifier.
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