Skip to main content

SVM and Greedy GMM Applied on Target Identification

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7063))

Included in the following conference series:

Abstract

This paper is focused on the Automatic Target Recognition (ATR) using Support Vector Machines (SVM) combined with automatic speech recognition (ASR) techniques. The problem of performing recognition can be broken into three stages: data acquisition, feature extraction and classification. In this work, extracted features from micro-Doppler echoes signal, using MFCC, LPCC and LPC, are used to estimate models for target classification. In classification stage, three parametric models based on SVM, Gaussian Mixture Model (GMM) and Greedy GMM were successively investigated for echo target modeling. Maximum a posteriori (MAP) and Majority-voting post-processing (MV) decision schemes are applied. Thus, ASR techniques based on SVM, GMM and GMM Greedy classifiers have been successfully used to distinguish different classes of targets echoes (humans, truck, vehicle and clutter) recorded by a low-resolution ground surveillance Doppler radar. The obtained performances show a high rate correct classification on the testing set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Natecz, M., Rytel-Andrianik, R., Wojtkiewicz, A.: Micro-Doppler Analysis of Signal Received by FMCW Radar. In: International Radar Symposium, Germany (2003)

    Google Scholar 

  2. Boashash, B.: Time Frequency Signal Analysis and Processing a comprehensive reference, 1st edn. Elsevier Ltd. (2003)

    Google Scholar 

  3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  4. Chen, V.C.: Analysis of Radar Micro-Doppler Signature With Time-Frequency Transform. In: Proc. Tenth IEEE Workshop on Statistical Signal and Array Processing, pp. 463–466 (2000)

    Google Scholar 

  5. Chen, V.C., Ling, H.: Time Frequency Transforms for Radar Imaging and Signal Analysis. Artech House, Boston (2002)

    MATH  Google Scholar 

  6. Anderson, M., Rogers, R.: Micro-Doppler Analysis of Multiple Frequency Continuous Wave Radar Signatures. In: SPIE Proc. Radar Sensor Technology, vol. 654 (2007)

    Google Scholar 

  7. Thayaparan, T., Abrol, S., Riseborough, E., Stankovic, L., Lamothe, D., Duff, G.: Analysis of Radar Micro-Doppler Signatures From Experimental Helicopter and Human Data. IEE Proc. Radar Sonar Navigation 1(4), 288–299 (2007)

    Google Scholar 

  8. Reynolds, D.A.A.: Gaussian Mixture Modeling Approach to Text-Independent Speaker Identification. Ph.D.dissertation, Georgia Institute of Technology, Atlanta (1992)

    Google Scholar 

  9. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker Verification Using Adapted Gaussian Mixture Models. Digit. Signal Process. 10, 19–41 (2000)

    Article  Google Scholar 

  10. Campbell, J.P.: Speaker Recognition: a tutorial. Proc.of the IEEE 85(9), 1437–1462 (1997)

    Article  Google Scholar 

  11. Li, J.Q., Barron, A.R.: Mixture Density Estimation. In: Advances in Neural Information Processing Systems, p. 12. MIT Press, Cambridge (2002)

    Google Scholar 

  12. Bilik, I., Tabrikian, J., Cohen, A.: GMM-Based Target Classification for Ground Surveillance Doppler Radar. IEEE Trans. on Aerospace and Electronic Systems 42(1), 267–278 (2006)

    Article  Google Scholar 

  13. Vander, H.F., Duin, W.R.P., de Ridder, D., Tax, D.M.J.: Classification, Parameter Estimation and State Estimation. John Wiley & Son, Ltd. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yessad, D., Amrouche, A., Debyeche, M. (2011). SVM and Greedy GMM Applied on Target Identification. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24958-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24958-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24957-0

  • Online ISBN: 978-3-642-24958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics