Skip to main content

Self-organizing Digital Spike Interval Maps

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7063))

Included in the following conference series:

Abstract

This paper studies digital spike interval maps and its learning algorithm. The map can output a variety of digital spike-trains. In order to learn a desired spike-train, two maps are switched by the contradiction detector and they evolve with self-organizing and growing functions. Performing basic numerical experiments for two examples, algorithm efficiency is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  2. Toyoizumi, T., Aihara, K., Amari, S.: Fisher information for spike-based population coding. Phys. Rev. Lett. 97, 098102 (2006)

    Article  Google Scholar 

  3. Perez, R., Glass, L.: Bistability, period doubling bifurcations and chaos in a periodically forced oscillator. Phys. Lett. 90A(9), 441–443 (1982)

    Article  MathSciNet  Google Scholar 

  4. Torikai, H., Saito, T.: Return map quantization from an integrate-and-fire model with two periodic inputs. IEICE Trans. Fund. E82-A(7), 1336–1343 (1999)

    Google Scholar 

  5. Takahashi, Y., Nakano, H., Saito, T.: A simple hyperchaos generator based on impulsive switching. IEEE Trans. Circuits Syst. II 51(9), 468–472 (2004)

    Article  Google Scholar 

  6. Hashimoto, S., Torikai, H.: A novel hybrid spiking neuron: bifurcations, responses, and on-chip learning. IEEE Trans. Circuits Syst. I 57(8), 2168–2181 (2010)

    Article  MathSciNet  Google Scholar 

  7. Campbell, S.R., Wang, D., Jayaprakash, C.: Synchrony and desynchrony in integrate-and-fire oscillators. Neural Computation 11, 1595–1619 (1999)

    Article  Google Scholar 

  8. Sushchik, M., Rulkov, N., Larson, L., Tsimring, L., Abarbanel, H., Yao, K., Volkovskii, A.: Chaotic pulse position modulation: a robust method of communicating with chaos. IEEE Comm. Lett. 4, 128–130 (2000)

    Article  Google Scholar 

  9. Torikai, T., Nishigami, T.: An artificial chaotic spiking neuron inspired by spiral ganglion cell. Neural Networks 22, 664–673 (2009)

    Article  MATH  Google Scholar 

  10. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  11. Torikai, H., Funew, A., Saito, T.: Digital spiking neuron and its learning for approximation of various spike-trains. Neural Networks 21, 140–149 (2008)

    Article  MATH  Google Scholar 

  12. Ogawa, T., Saito, T.: Digital spike maps and learning of spike signals. In: Proc. IEEE-INNS Int’l. Joint Conf. Neural Netw., pp. 1587–1592 (2010)

    Google Scholar 

  13. Oshime, T., Saito, T., Torikai, H.: ART-Based Parallel Learning of Growing SOMs and its Application to TSP. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4232, pp. 1004–1011. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ogawa, T., Saito, T. (2011). Self-organizing Digital Spike Interval Maps. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24958-7_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24958-7_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24957-0

  • Online ISBN: 978-3-642-24958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics