Skip to main content

Spiking Neural PID Controllers

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7064))

Included in the following conference series:

Abstract

A PID controller is a simple and general-purpose way of providing responsive control of dynamic systems with reduced overshoot and oscillation. Spiking neural networks offer some advantages for dynamic systems control, including an ability to adapt, but it is not obvious how to alter such a control network’s parameters to shape its response curve. In this paper we present a spiking neural PID controller: a small network of neurons that mimics a PID controller by using the membrane recovery variable in Izhikevich’s simple model of spiking neurons to approximate derivative and integral functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, 1st edn. The MIT Press (2001)

    Google Scholar 

  2. Furber, S., Temple, S.: Neural systems engineering. Journal of The Royal Society Interface 4(13), 193–206 (2007)

    Article  Google Scholar 

  3. Gerstner, W., Kistler, W.M.: Spiking Neuron Models, 1st edn. Cambridge University Press (2002)

    Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 117(4), 500–544 (1952)

    Article  Google Scholar 

  5. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)

    Article  Google Scholar 

  6. Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons?. IEEE Transactions on Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  7. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), 1st edn. The MIT Press (2006)

    Google Scholar 

  8. Jin, X., Furber, S.B., Woods, J.V.: Efficient modelling of spiking neural networks on a scalable chip multiprocessor, pp. 2812–2819 (June 2008)

    Google Scholar 

  9. Rast, A.D., Khan, M.M., Jin, X., Plana, L.A., Furber, S.B.: A universal abstract-time platform for real-time neural networks. In: Proceedings of the 2009 International Joint Conference on Neural Networks, IJCNN 2009, pp. 3378–3385. IEEE Press, Piscataway (2009)

    Google Scholar 

  10. Rast, A.D., Jin, X., Galluppi, F., Plana, L.A., Patterson, C., Furber, S.: Scalable event-driven native parallel processing: the SpiNNaker neuromimetic system. In: Proceedings of the 7th ACM International Conference on Computing Frontiers, CF 2010, pp. 21–30. ACM, New York (2010)

    Google Scholar 

  11. Shu, H., Pi, Y.: Pid neural networks for time-delay systems. Computers & Chemical Engineering 24(2-7), 859 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Webb, A., Davies, S., Lester, D. (2011). Spiking Neural PID Controllers. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics