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Abstract In this paper, we propose a new framework to

analyze the temporal dynamics of the emotional stimuli.

For this framework, both electroencephalography signal

and visual information are of great importance. The fusion

of visual information with brain signals allows us to cap-

ture the users’ emotional state. Thus we adopt previously

proposed fuzzy-GIST as emotional feature to summarize

the emotional feedback. In order to model the dynamics of

the emotional stimuli sequence, we develop a recurrent

neuro-fuzzy network for modeling the dynamic events of

emotional dimensions including valence and arousal. It can

incorporate human expertise by IF-THEN fuzzy rule while

recurrent connections allow the fuzzy rules of network to

see its own previous output. The results show that such a

framework can interact with human subjects and generate

arbitrary emotional sequences after learning the dynamics

of an emotional sequence with enough number of samples.

Keywords Dynamics of emotion �
Electroencephalography (EEG) � Fuzzy-GIST �
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Introduction

The need for computational and robotic models which can

understand the emotional state of the user is ever growing

(Picard 2000). A lot of literatures are dedicated to studying

affect detection. Calvo et al. (2010) give a comprehensive

interdisciplinary review of models, methods and applica-

tions of affect detection. However, time is clearly impor-

tant in emotion and emotions are a special dynamic form of

cognition, many researchers start to be interested in the

dynamical characteristics of emotions (D’Mello 2011;

D’Mello and Graesser 2011). In this paper, we propose a

new framework aiming to analyze the temporal dynamics

of the emotional stimuli sequence.

In order to make the system be capable of understanding

more complex emotions, we consider a valence-arousal

(VA) model (Russell 1980; Lang 1995). By using such a

dimensional approach, all emotions can be represented as

points in the VA space, in which we can label the images

joy, pleasure, anger and sadness. Not only is the VA space

helpful in visualizing the location, extent and relationships

between emotion categories, but also it is associated with

the limbic system which suggestively supports a variety of

functions including emotion, behavior, long term memory,

and olfaction. Responses along the emotional valence

dimension are associated with significant clusters in the

amygdala, the anterior parietal cortex, and the insular

cortex (Anders et al. 2004). Responses along the arousal

dimension are associated with significant clusters in two

regions: activity in the right supramarginal gyrus, and

thalamic activity varied with reported arousal (Anders

et al. 2004). For emotion related feature extraction, we

adopted the fuzzy-GIST, which is a kind of conceptual gist

of a scene that contains semantic information from both

electroencephalography (EEG) and visual information
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(Zhang and Lee 2012). Furthermore, we develop a novel

recurrent neuro-fuzzy network to incorporate the human

expertise to model the dynamic events of emotional stimuli

sequence.

The remaining sections are organized as follows.

‘‘Methods’’ section introduces the proposed recurrent

neuro-fuzzy network for this study including fuzzy-GIST.

In ‘‘Experiments’’ section, we will give the experiment

results and evaluate the performance of the proposed sys-

tem. Some final conclusions and discussions are given in

the last section.

Methods

Overview of the emotion dynamic analysis

Figure 1 demonstrates the graphic outline of the proposed

approach. The considered input sequence is split into the

sequences of visual information and EEG signal. The EEG

can be allocated to specific image in the sequence, there-

fore, both EEG and visual features are dynamic (Gao et al.

2011). After signal processing, we extract the fuzzy-GIST

for 2-emotion understanding to model the dynamics of

emotional valence through a recurrent neuro-fuzzy net-

work. Meanwhile, by taking arousal indicator into con-

sideration, the fuzzy-GIST for 4-emotion understanding are

fed to another recurrent neuro-fuzzy network to analyze the

dynamic events of the emotional dimension of arousal. The

fuzzy-GIST for 2-emotion and that for 4-emotion are

introduced in Zhang and Lee (2012). We can then monitor

the emotional trajectory by mapping each stimulus onto

VA space.

Fuzzy-GIST as emotional feature at semantic level

Since we need features in emotional perspective, we pro-

pose the fuzzy-GIST to build a semantic feature vector to

represent a scene image as well as consider the human

feeling stimulated by the scene. The fuzzy-GIST is origi-

nated from the ‘‘GIST’’ (Oliva and Torralba 2006; Zhang

and Lee 2009), and it is a kind of conceptual gist of a scene

that contains semantic information. The procedure of

extracting fuzzy-GIST from a natural scene is demon-

strated in Fig. 2. 12-channel EEG signals are recorded and

we adopt wavelet decomposition (WLD) (Burrus et al.

1997) for denoising EEG in our study. The selected

wavelet filter for denoising the raw EEG signal is the

reverse biothorgonal6.8 (rbio6.8) (Mallat 1989; Cong et al.

2012), and we select the D7, D8, and D9 to reconstruct the

desired ‘‘real signals’’ (Zhang and Lee 2012). We focus on

the 500 ms time course starting from stimulus onset and

extract the power difference between left and right hemi-

spheres in both alpha and gamma band to monitor the

valence state of test subjects (Niemic 2002; Müller et al.

1999). On the other hand, beta/alpha ratio is used as an

indicator if the subject is in an arousal state (Kandel et al.

2000). The EEG features from a subject are processed by

the fuzzy C-means clustering (FCM). Based on the clus-

tering result, a natural scene is assigned to positive/nega-

tive and calm/arousal groups to a degree of belongingness.

According to the relation between the orientation distri-

bution and human emotion evoked by a natural scene, the

FCM is used to partition the orientation information of the

image into 4 classes in terms of the orientation distribution

and make an orientation descriptor for the image. We can

describe the lightness as very dark, dark, middle, light and

very light. A membership grade maps semantic words

because of the fuzziness of human perception (Jang et al.

1997). In the similar way, we got warm-cool descriptor

including warm, middle and cool, as well as saturation

descriptor that indicates the low, middle and high satura-

tion of the natural scene. The brain activity membership

grades and visual information membership grades

are cascaded to construct the emotional feature space.

The difference between the fuzzy-GIST for 2-emotion

Fig. 1 Graphic outline of the

proposed approach
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understanding and that for 4-emotion understanding

depends on considering the arousal indicator obtained from

EEG signals. Different subjects may have different emo-

tional responses even toward the same scene image, the

fuzzy-GIST based on the combination of visual semantic

information and the semantic EEG information can help to

handle this personal bias for the emotion recognition.

Recurrent neuro-fuzzy network

The neuro-fuzzy network incorporates neural network

learning concepts in fuzzy inference systems, resulting in

adaptive neuro-fuzzy inference systems (ANFIS) (Jang

1993). In the ANFIS, the fuzzy system can be represented in

a parametric form and the parameters are adaptively tuned

by a learning procedure. ANFIS is a neuro-fuzzy network to

recognize a pattern and adapt itself in a changing environ-

ment, while the fuzzy inference systems extract fuzzy rules

and perform inferring and decision making (Held et al.

2006; Kecman 2001; Wang et al. 2005).

There is possibility, which is to allow time to be rep-

resented by the effect it has on processing. This means

giving the processing system dynamic properties which are

responsive to temporal sequences. In short, for modeling

the dynamics of sequence, the network must be given

temporal memory (Frayman and Wang 1998).

Figure 3 shows the proposed recurrent neuro-fuzzy net-

work. As show in the Fig. 3, the proposed network is based on

Takagi-Sugeno-Kang (TSK) type neuro-fuzzy inference sys-

tem (Jang et al. 1997; Jang 1993; Nauck et al. 1997). The

input of the network consists of previous and current input

fuzzy-GIST, as well as previous output of the network

(Gonzalez and Yang 2010; Wu et al. 2010). Nodes in layer 2

act as membership function to express the input fuzzy lin-

guistic variables. The Gaussian membership function is

adopted for the nodes in layer 2. Each node in layer 3 is called a

rule node, it is formed by fuzzy AND operation. Nodes in layer

4 are called consequent nodes which perform a weighted

linear combination of the input variables. The output of the

network is the result of defuzzification of outputs of layer 4.

The recurrent connections allow the network’s fuzzy rule

nodes to see their own previous output, so that the subsequent

behavior can be shaped by previous responses. The recurrent

connections are what give the networks memory.

To give a clear understanding of the mathematical

function of each node, we will describe function of

recurrent neuro-fuzzy network layer by layer. For notation

convenience, the net input to the ith node in layer k is

denoted by ui
(k) and the output value by Oi

(k).

Layer 1: The node only transmits input values to layer 2.

No function is performed in this layer.

O
ð1Þ
i ¼ u

ð1Þ
i ¼ ½xðnÞ; xðn� 1Þ; . . .; xðn� pÞ; yðn� 1Þ;

yðn� 2Þ; . . .; yðn� qÞ� ð1Þ

Layer 2: The following Gaussian membership function

is used:

O
ð2Þ
ij ¼ exp �

u
ð2Þ
j � mij

� �2

r2
ij

8><
>:

9>=
>;

ð2Þ

Fig. 2 The procedure of

extracting fuzzy-GIST from a

natural scene
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where mij and rij are the center and the width of the

Gaussain membership function of the ith term of the jth

input variable uj
(2).

Layer 3: The output of each node in this layer is

determined by fuzzy AND operation. Here, the product

operation is utilized to determine the firing strength of each

rule. The each rule is defined as:

O
ð3Þ
i ¼ Wi ¼

YN
j¼1

O
ð2Þ
ij

¼ exp �
XN

j¼1

u
ð2Þ
j � mij

� �2

r2
ij

8><
>:

9>=
>;

ð3Þ

where N is the dimension of input layer.

Layer 4: The consequent node which performs a

weighted linear combination of the input variables is

defined as:

O
ð4Þ
i ¼

X
Wifi

¼
X

Wi bi0þ
Xp

j¼0

aijxðn� jÞþ
Xq

k¼1

aikyðn�kÞ
 !

ð4Þ

where bi0 is a bias term.

Layer 5: The node in this layer computes the output

signal y of the recurrent neuro-fuzzy network by defuzz-

ification. The mathematical function is as:

yðnÞ ¼ Oð5Þ ¼
P

WifiP
Wi

ð5Þ

The input consists of the fuzzy-GISTs of current

stimulus and previous 2 stimuli, as well as outputs of

previous 5 stimuli. As far as training is concerned, the

backpropagation through time (BPTT) algorithm is used

(Haykin 1998).

Experiments

The dynamics of sequence consisting of identical/

similar emotional scenes

We first conducted a simple experiment to investigate the

dynamics of emotional sequences that consist of same or

similar emotional scenes. Five subjects participated in the

experiments. We prepared 4 positive and 4 negative emo-

tional sequences1 for each subject, and each sequence

consists of 10 identical emotional scenes.

Twelve channels of unipolar EEG (AFZ, F3, FZ, F4,

FC3, FCZ, FC4, T7, C3, CZ, C4, T8) were obtained using

EEG acquisition equipment BIOPAC MP150 and an

electrode cap. Fpz was taken as the ground while the

linked-earlobe played the role of the reference since this

method used each ear as a reference for its own hemi-

sphere and thus could reduce the electrocardiography

(ECG) artifact. Impedance in each channel was kept

below 10 kX. All channels were preprocessed on-line by

a 0.1–100 Hz band pass filter and active notch filter to

neglect the power line interference. And the data acqui-

sition system was set to trigger at the appearance of visual

1 For this experiment, we do not consider arousal axis for this

experiment.

Fig. 3 The architecture of the

proposed recurrent neuro-fuzzy

network
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stimuli. The EEG with a sampling rate of 1,200 Hz and a

total recording time of 4 s was used for observing the

human brain activity stimulated by natural scene. During

the whole experiment, we kept the environment as quiet

as possible. The subjects were instructed not to blink,

move eyes, or move any other part of the body but try to

stay relaxed and keep the eyes open during the image

appearance. In addition, before any recording for an

image, we supplied a neutral background to help the

participants be emotionless. The rbio6.8 wavelet filters

were used to obtain the single trial Event Related

Potentials (ERPs), and since the P100, N200 and P300

were obviously observed, we used the data which is a

500ms time course after the onset of the stimulus for the

further feature extraction (Zhang and Lee 2012). The

power difference between left and right hemispheres in

both alpha and gamma bands were used to indicate the

valence state of test subjects. In order to do this, we

computed the power spectrum as for each channel to

measure the power at various frequencies, and we used

the average of left and right hemisphere power values at

alpha (8–12 Hz) and gamma (30–40 Hz) bands to get the

hemisphere power asymmetry. Then the valence indica-

tors for a subject were processed by the FCM. Based on

the clustering result, a natural scene is assigned to posi-

tive/negative categories to a degree of belongingness. The

orientation information was obtained by a group of multi-

scaled oriented filters. At different scale, they were of 4, 6

and 8 orientations, respectively. Then the basic orientation

features were down-sampled to a size of 4 9 4 to form

the orientation feature vector with dimension of

4 9 4 9 18. The FCM is used to partition the orientation

information of the image into 4 classes in term of the

orientation distribution, and make an orientation descrip-

tor for the image. The L�C�H� color space was used for

color information, and they were down-sampled to a size

of 10 9 10, respectively. Therefore, the 3 color feature

vectors with dimension of 10 9 10 can be obtained. Each

component (lightness, chroma and hue) was clustered into

a specific number of groups to generate the semantic

descriptors for the natural scenes. The lightness descriptor

was used to abstract an image as very dark, dark, middle,

Fig. 4 Modeling the dynamics of emotional sequences through

interacting with Subject 1. a and b for negative sequences and

c, d for positive sequences. For each sub-figure, the upper plot shows

the training procedure for a emotional sequence, blue line represents

target response and red circles represent response of dynamic neuro-

fuzzy network; The bottom plot shows how we can generate dynamics

for a new emotional sequence. (Color figure online)
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light and very light. In the similar way, we got saturation

descriptor that indicates the low, middle and high satu-

ration of a natural scene, as well as warm-cool descriptor

indicating warm, middle and cool.

After signal processing, we extract the fuzzy-GIST for

2-emotion understanding to model the dynamics of emo-

tional valence through a RNF network. Input of the RNF

network consists of the fuzzy-GISTs of current stimulus

and previous 2 stimuli, as well as outputs of previous 2

stimuli (e.g., p = 2, q = 2), which allows the model have

enough dynamic input, but keep the dimension of input to

model not too high so that the model will not have very

sparse input. An emotional sequence is pair-wised with

another according to emotional category. Therefore, after a

RNF network learns dynamic events of an positive emo-

tional sequence, it will be used to generate dynamics of

another pair-wised positive sequence for testing. Using

such an experimental paradigm, we aim to analyze the

dynamic characteristics when an emotional stimulus or

similar stimulus are repeatedly shown to subjects.

Figure 4a shows learning dynamics for a negative

sequence and generating dynamics for a new negative

sequence through interacting with subject 1. The blue solid

lines represent target response while red dot circles repre-

sent response of dynamic neuro-fuzzy network. Figure 4b

shows learning dynamics for another negative sequence

and generating dynamics for a new negative sequence

through interacting with subject 1. Figure 4c, d shows

learning dynamics for positive sequences and generating

dynamics for new positive sequences through interacting

with subject 1. In the same way, analyses of dynamics for

other three different subjects are shown in Figs. 5, 6 and 7.

As we can see from the results, when subjects repeatedly

watch positive or negative stimuli, valence feedbacks from

subjects vary and coverage at neutral state, this results in

dynamics of emotion. In the same way, we observed the

dynamics of emotional sequences for other four different sub-

jects and the results were consistent (Results for three of them

are shown above). Using the fuzzy-GIST and the RNF, we can

successively model dynamic events of an emotional sequence.

Fig. 5 Modeling the dynamics of emotional sequences through

interacting with Subject 2. a and b for negative sequences and

c, d for positive sequences. For each sub-figure, the upper plot shows

the training procedure for a emotional sequence, blue line represents

target response and red circles represent response of dynamic neuro-

fuzzy network; The bottom plot shows how we can generate dynamics

for a new emotional sequence. (Color figure online)
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Analyzing the dynamics of complex emotional scene

sequences

Next we did experiments to study the dynamics of more

complex emotional sequences. 11 subjects participated in

this study and 110 color images selected from IAPS and the

corresponding EEG stimulated by images were used to

extract the emotional features. In order to analyze the

dynamic events of more complex emotional sequence, we

adopt beta/alpha ratio as an indicator whether a subject is

in arousal state. Because beta (13–30 Hz) waves are con-

nected to an alert state of mind, whereas alpha waves are

more dominant in a relaxed person (Kandel et al. 2000).

We randomly selected 50 % of the data and reordered

them to generate 20 different emotional sequences for

learning the valence and arousal dynamics of the emotional

scene sequence. And we used the remaining data to gen-

erate random sequence to evaluate the generalization

capability of the trained network. During the experiments,

human subjects were asked to give valence and arousal

scores to describe the emotional feedback of each stimulus.

These results are used to evaluate the accuracy of an

emotional sequence generated by the network. The current

valence and arousal states highly depend on the previous

states (Picard 1997). In order to handle the temporal effect

on emotional processing, we took the average values of the

valence and arousal scores of current stimulus and the

previous two stimuli as valence value and arousal value for

the current sample data. Thus, the valence and arousal

scores become more smooth.

The prediction of emotional categories has two steps. In

the first step, regression models were used to regress the

valence/or arousal scores of an emotional stimulus. In the

second step, emotional categorization was done by locating

each stimulus in the VA space, according to the Algorithm 1.

Figure 8 shows the learning of dynamic events of an

emotional sequence with interacting with a particular sub-

ject. The two subfigures on the top show the learning of

valence and arousal dynamics, respectively. The solid lines

represent the target responses while the dashed lines repre-

sent the dynamic responses of the RNF networks. On the

bottom , the figure on the right-hand side is the emotional

Fig. 6 Modeling the dynamics of emotional sequences through

interacting with Subject 3. a and b for negative sequences and

c, d for positive sequences. For each sub-figure, the upper plot shows

the training procedure for a emotional sequence, blue line represents

target response and red circles represent response of dynamic neuro-

fuzzy network; The bottom plot shows how we can generate dynamics

for a new emotional sequence. (Color figure online)
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trajectory made by locating each stimulus in the VA space.

Compared with the target emotional trajectory shown on the

left-hand side, we can see that the networks is capable of

learning the dynamics of an emotional sequence.

After training the RNF networks for valence and arousal

dimensions, we used unlearnt data samples to randomly

generate five emotional sequences with different lengths

and different orders of emotional categories. Figures 9 and

10 demonstrate the results of the trained RNF networks

generating arbitrary emotional sequences by interacting

with the above mentioned subject.

As we can see from Figs. 9 and 10, through modeling

the dynamics of valence and arousal dimensions separately,

our proposed network is capable of generating the emo-

tional trajectory for a new random emotion sequence.

We repeated the new sequence generation procedure

five times for each subject, and then made a statistical

result to evaluate the generalization performances of the

framework by calculating the average accuracy for

Fig. 7 Modeling the dynamics of emotional sequences through

interacting with Subject 4. a and b for negative sequences and

c, d for positive sequences. For each sub-figure, the upper plot shows

the training procedure for a emotional sequence, blue line represents

target response and red circles represent response of dynamic neuro-

fuzzy network; The bottom plot shows how we can generate dynamics

for a new emotional sequence. (Color figure online)

Algorithm 1 Algorithms for predicting the temporal emotional

categories

Data: fuzzy-GIST for 2-emotion and 4-emotion;

Use RNF models to regress valence and arousal

scores valence(n), arousal(n);

If valence(n) [ = 5 then

If arousal(n) [ = 5 then

emotion(n) = ‘‘Joy’’;

else

emotion(n) = ‘‘Pleasure’’;

end

else

If arousal(n) [ = 5 then

emotion(n) = ‘‘Angry’’;

else

emotion(n) = ‘‘Sadness’’;

end

end
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generating an emotional sequence as shown in Fig. 11.

Here the accuracy indicates how many percent of emo-

tional categories in a sequence can be correctly predicted.

As shown in the Fig. 11, we can see that the framework

can interact with human subjects, learn the dynamic events

of a sequence of emotional stimuli and then generate a

new emotional sequence, which is close to the emotional

feedback from human subjects. This study shows promis-

ing results revealing that machine is capable of interacting

with human and generating its own emotion varying with

natural scene stimuli.

Conclusion and discussion

The ultimate goal of this work is to build embedded emotion

into a machine based on EEG and visual multimodal sig-

nals. First, we analyze emotion related information in the

feature domain based on fuzzy-GIST, which considering

the interaction between the brain signal and visual infor-

mation. And also, the temporal dynamics of emotional

sequences is exploited by a newly proposed RNF network,

whose short term memory and approximation capabilities

cater for modeling dynamic events in emotional sequences.

This study shows promising results revealing that machine

is capable of interacting with human and generating its own

emotion varying with natural scene stimuli.

The proposed approach is likely to have a number of

interesting applications such as intelligent tutoring system,

human computer interface. It is an important property for

human machine interaction, which tries to satisfy the

affective users’ requirements, and make them as productive

as possible. Additionally, human emotion understanding

system is critical because an affect sensitive interface can

never respond to users’ emotional states if it cannot

understand their emotional states.

Fig. 8 Learning the dynamics

of valence and arousal by two

recurrent neuro-fuzzy networks

Fig. 9 Valence and arousal

targets and output responses for

a new sequence and its

emotional trajectory
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Much work remains to be done in this largely unex-

plored field. First, we will more deeply investigate the

development of emotional dynamics. In order to make a

machine autonomously develop itself to learn the dynamics

with new arriving data, an incremental learning algorithm

for recurrent neuro-fuzzy network needs to be taken into

consideration. Second, besides other kinds of emotional

stimulus, audio cues also play an important role in emotion

understanding for a machine. Therefore, we may include

audio signal to form visual-audio stimuli for inducing

subjects’ emotional responses. In the next stage, we will try

to consider the dynamic emotional feedback of a subject

during watching a video clip. For this, we are going to

develop a novel feature extraction method to extract

3-Dimensional emotional GIST for video clip. Third, we

developed the current system interacting with human sub-

jects through EEG signals. However, there exists many

other modalities or channels for human machine interaction

(e.g., face, voice, gesture, and other physiological signals).

Each modality has advantages and disadvantages toward its

use as a viable affect detection channel. In our future work,

we may consider more different modalities. For example,

besides using the EEG signals, we can also develop system

to understand subjects’ emotion state through their voice,

body language, Electrocardiogram (ECG) signals, skin

conductivity, etc.

Fig. 11 Accuracy of generating

an emotional sequence for

training (%) and generalization

[(mean ± SD)%]

Fig. 10 Valence and arousal

targets and output responses for

another new sequence and its

emotional trajectory
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