Skip to main content

Can Classical Epistemic States Be Entangled?

  • Conference paper
Quantum Interaction (QI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7052))

Included in the following conference series:

Abstract

Entanglement is a well-known and central concept in quantum theory, where it expresses a fundamental nonlocality (holism) of ontic quantum states, regarded as independent of epistemic means of gathering knowledge about them. An alternative, epistemic kind of entanglement is proposed for epistemic states (distributions) of dynamical systems represented in classical phase spaces. We conjecture that epistemic entanglement is to be expected if the states are based on improper phase space partitions. The construction of proper partitions crucially depends on the system dynamics.

Although improper partitions have a number of undesirable consequences for the characterization of dynamical systems, they offer the potential to understand some interesting features such as incompatible descriptions, which are typical for complex systems. Epistemic entanglement due to improper partitions may give rise to epistemic classical states analogous to quantum superposition states. In mental systems, interesting candidates for such states have been coined acategorial states, and among their key features are temporally nonlocal correlations. These correlations can be related to the situation of epistemic entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, D., Durt, T., Grib, A., Van Bogaert, B., Zapatrin, A.: Quantum Structures in Macroscopical Reality. International Journal of Theoretical Physics 32, 489–498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allahverdyan, A.E., Khrennikov, A., Nieuwenhuizen, T.M.: Brownian entanglement. Physical Review A 72, 32102 (2005)

    Article  MathSciNet  Google Scholar 

  3. Allefeld, C., Atmanspacher, H., Wackermann, J.: Mental States as Macrostates Emerging from Brain Electrical Dynamics. Chaos 19, 015102 (2009)

    Article  MathSciNet  Google Scholar 

  4. Atmanspacher, H.: Categoreal and Acategoreal Representation of Knowledge. Cognitive Systems 3, 259–288 (1992)

    Google Scholar 

  5. Atmanspacher, H.: Quantum Approaches to Consciousness. In: Zalta, E. (ed.) Stanford Encyclopedia of Philosophy (2011)

    Google Scholar 

  6. Atmanspacher, H., beim Graben, P.: Contextual Emergence of Mental States from Neurodynamics. Chaos and Complexity Letters 2, 151–168 (2007)

    Google Scholar 

  7. Atmanspacher, H., Fach, W.: Acategoriality as Mental Instability. Journal of Mind and Behavior 26, 161–186 (2005)

    Google Scholar 

  8. Atmanspacher, H., Filk, T.: A Proposed Test of Temporal Nonlocality in Bistable Perception. Journal of Mathematical Psychology 54, 314–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atmanspacher, H., Filk, T.: Contra Classical Causality: Violating Temporal Bell Inequalities in Mental Systems (to be published, 2011)

    Google Scholar 

  10. Atmanspacher, H., Primas, H.: Epistemic and Ontic Quantum Realities. In: Castell, L., Ischebeck, O. (eds.) Time, Quantum, and Information, pp. 301–321. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Atmanspacher, H., Römer, H., Walach, H.: Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond. Foundations of Physics 32, 379–406 (2002)

    Article  MathSciNet  Google Scholar 

  12. beim Graben, P., Atmanspacher, H.: Complementarity in Classical Dynamical Systems. Foundations of Physics 36, 291–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. beim Graben, P., Atmanspacher, H.: Extending the Philosophical Signifance of the Idea of Complementarity. In: Atmanspacher, H., Primas, H. (eds.) Recasting Reality. Wolfgang Pauli’s Philosophical Ideas and Contemporary Science, pp. 99–113. Springer, Berlin (2009)

    Google Scholar 

  14. Bermúdez, J.L., Cahen, A.: Nonconceptual mental content. Stanford Encyclopedia of Philosophy (2008), http://plato.stanford.edu/entries/content-nonconceptual/

  15. Bollt, E., Stanford, T., Lai, Y., Życzkowski, K.: What Symbol Dynamics Do We Get with a Misplaced Partition? On the Validity of Threshold Crossings Analysis of Chaotic Time-Series. Physica D 154, 259–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bowen, R.: Markov Partitions for Axiom A Diffeomorphisms. American Journal of Mathematics 92, 725–747 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crutchfield, J.P.: Noisy Chaos. PhD thesis at the University of California at Santa Cruz, Sec. 5 (1983)

    Google Scholar 

  18. Crutchfield, J.P., Packard, N.H.: Symbolic Dynamics of Noisy Chaos. Physica D 7, 201–223 (1983)

    Article  MathSciNet  Google Scholar 

  19. Feil, D., Atmanspacher, H.: Acategorial States in a Representational Theory of Mental Processes. Journal of Consciousness Studies 17(5-6), 72–101 (2010)

    Google Scholar 

  20. Filk, T., von Müller, A.: Quantum Physics and Consciousness: The Quest for a Common Conceptual Foundation. Mind and Matter 7, 59–79 (2009)

    Google Scholar 

  21. Froyland, G.: Extracting Dynamical Behavior Via Markov Models. In: Mees, A.I. (ed.) Nonlinear Dynamics and Statistics, pp. 281–312. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

  22. Gebser, J.: The Ever-Present Origin. Ohio University Press, Columbus (1986)

    Google Scholar 

  23. Harrigan, N., Spekkens, R.W.: Einstein, Incompleteness, and the Epistemic View of Quantum States. Foundations of Physics 40, 125–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khrennikov, A.Y.: Classical and Quantum Mechanics on Information Spaces with Applications to Cognitive, Psychological, Social, and Anomalous Phenomena. Foundations of Physics 29, 1065–1098 (1999)

    Article  MathSciNet  Google Scholar 

  25. Kolmogorov, A.N.: New Metric Invariant of Transitive Dynamical Systems and Endomorphisms of Lebesgue Spaces. Doklady of Russian Academy of Sciences 124, 754–755 (1958)

    Google Scholar 

  26. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  27. Metzinger, T.: Being No One. MIT Press, Cambridge (2003)

    Google Scholar 

  28. Pöppel, E.: A Hierarchical Model of Temporal Perception. Trends in Cognitive Science 1, 56–61 (1997)

    Article  Google Scholar 

  29. Primas, H.: Mathematical and Philosophical Questions in the Theory of Open and Macroscopic Quantum Systems. In: Miller, A.I. (ed.) Sixty-Two Years of Uncertainty, pp. 233–257. Plenum, New York (1990)

    Google Scholar 

  30. Primas, H.: Theory Reduction and Non-Boolean Theories. Journal of Mathematical Biology 4, 281–301 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Primas, H.: Non-Boolean Descriptions for Mind-Matter Problems. Mind and Matter 5, 7–44 (2007)

    Google Scholar 

  32. Ruelle, D.: The Thermodynamic Formalism for Expanding Maps. Communications of Mathematical Physics 125, 239–262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shalizi, D.R., Crutchfield, J.P.: Computational Mechanics: Pattern and Prediction, Structure and Simplicity. Journal of Statistical Physics 104, 817–879 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shalizi, C.R., Moore, C.: What Is a Macrostate? Subjective Observations and Objective Dynamics (2003) (preprint), http://philsci-archive.pitt.edu/1119/1/whats-macro.pdf

  35. Sinai, Y. G.: On the Notion of Entropy of a Dynamical System. Doklady of Russian Academy of Sciences 124, 768–771 (1959)

    MATH  Google Scholar 

  36. Sinai, Y. G.: Markov Partitions and C-Diffeomorphisms. Functional Analysis and its Applications 2, 61–82 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  37. Skufca, J.D., Bollt, E.M.: A concept of homeomorphic defect for defining mostly conjugate dynamical systems. Chaos 18, 013118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Spekkens, R.W.: In Defense of the Epistemic View of Quantum States: A Toy Theory. Physical Review 75, 032110 (2007)

    Article  Google Scholar 

  39. Sudarshan, E.C.G.: Perception of Quantum Systems. In: van der Merwe, A. (ed.) Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, pp. 457–467. Plenum, New York (1983)

    Google Scholar 

  40. Viana, R.L., Grebogi, G., de Pinto, S.E., Barbosa, J.R.R., Grebogi, C.: Pseudo-Deterministic Chaotic Systems. International Journal of Bifurcation and Chaos 13, 3235–3253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Westmoreland, M.D., Schumacher, B.D.: Non-Boolean Derived Logics for Classical Systems. Physical Review A 48, 977–985 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atmanspacher, H., beim Graben, P., Filk, T. (2011). Can Classical Epistemic States Be Entangled?. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds) Quantum Interaction. QI 2011. Lecture Notes in Computer Science, vol 7052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24971-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24971-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24970-9

  • Online ISBN: 978-3-642-24971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics