Skip to main content

A 7/6-Approximation Algorithm for the Max-Min Connected Bipartition Problem on Grid Graphs

  • Conference paper
Computational Geometry, Graphs and Applications (CGGA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7033))

Abstract

For a given graph with nonnegative weights on nodes, the max-min connected bipartition problem looks for a way to partition the graph into two connected subgraphs such that the minimum weight of the two subgraphs is maximized. In this paper, we give a polynomial time 7/6-approximation algorithm for grid graphs. The approximation ratio is currently the best result achieved in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, R., Lari, I., Lucertini, M., Simeone, B.: Max-min partitioning of grid graphs into connected components. Networks 32, 115–125 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Becker, R., Lari, I., Lucertini, M., Simeone, B.: A polynomial-time algorithm for max-min partitioning of ladders. Theor. Comput. Syst. 34, 353–374 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms 57, 75–94 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chataigner, F., Salgado, L.R.B., Wakabayashi, Y.: Approximation and Inaproximability results on balanced connected partitions of graphs. Discret. Math. Theor. Comput. Sci. 9, 177–192 (2007)

    MATH  Google Scholar 

  5. Chlebíková, J.: Approximating the maximally balanced connected partition problem in graphs. Inf. Process. Lett. 60, 225–230 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Even, S., Tarjan, R.E.: Computing an st-numbering. Theor. Comput. Sci. 2, 339–344 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 209–221 (1987)

    Article  MathSciNet  Google Scholar 

  8. Lovász, L.: A homology theory for spanning trees of a graph. Acta Math. Acad. Sci. Hunger 30, 241–251 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Perl, Y., Schach, S.: Max-min tree partitioning. J. ACM 28, 5–15 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. West, D.B.: Introduction to Graph Theory 2001. Prentice Hall (2001)

    Google Scholar 

  11. Wu, B.Y.: The minimum non-separating path and the balanced connected bipartition on grid graphs, arXiv:1105.5915v1 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, B.Y. (2011). A 7/6-Approximation Algorithm for the Max-Min Connected Bipartition Problem on Grid Graphs. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds) Computational Geometry, Graphs and Applications. CGGA 2010. Lecture Notes in Computer Science, vol 7033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24983-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24983-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24982-2

  • Online ISBN: 978-3-642-24983-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics