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Abstract: 

Partial words   are finite sequences over a finite alphabet that may contain some holes. A variant 
of the celebrated Fine–Wilf theorem shows the existence of a bound L=L(h,p,q) such that if a 
partial word of length at least L   with h   holes has periods p   and q, then it also has period 
gcd(p,q). In this paper, we associate a graph with each p  - and q  -periodic word, and study two 
types of vertex connectivity on such a graph: modified degree connectivity and r  -set 
connectivity where r = q mod p. As a result, we give an algorithm for computing L(h,p,q) in the 
general case and show how to use it to derive the closed formulas. 

Keywords: Automata and formal languages | Combinatorics on words | Partial words | Fine and 
Wilfʼs theorem | Strong periods | Graph connectivity | Optimal lengths 

Article: 

1. Introduction 

The problem of computing periods in words, or finite sequences of symbols from a finite 
alphabet, has important applications in several areas including data compression, coding, 
computational biology, string searching and pattern matching algorithms. Repeated patterns and 
related phenomena in words have played over the years a central role in the development of 
combinatorics on words [5], and have been highly valuable tools for the design and analysis of 
algorithms. In many practical applications, such as DNA sequence analysis, repetitions admit a 
certain variation between copies of the repeated pattern because of errors due to mutation, 
experiments, etc. Approximate repeated patterns, or repetitions where errors are allowed, are 
playing a central role in different variants of string searching and pattern matching 
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problems [13]. Partial words  , or finite sequences that may contain some holes, have acquired 
importance in this context. A (strong  ) period   of a partial word u   over an alphabet A   is a 
positive integer p   such that u(i)=u(j)whenever u(i),u(j)∈A and  (in such a case, we 
call u p-periodic  ). In other words, p   is a period of u   if for all positions i   and j   congruent 
modulo p, the letters in these positions are the same or at least one of these positions is a hole. 
For example, the word aabaabaa has period 3 but not 4, while the partial word a⋄⋄aabaa, with 
holes at positions 1 and 2, has periods 3 and 4 (note that our words are starting at position 0 
rather than 1). 

There are many fundamental results on periods of words. Among them is the well-known 
periodicity result of Fine and Wilf [8], which determines how long a p  - and q  -periodic word 
needs to be in order to also begcd(p,q)-periodic. More precisely, any word having two 
periods p,q and length at least p+q−gcd(p,q)has also gcd(p,q) as a period. Moreover, the 
length p+q−gcd(p,q) is optimal since counterexamples can be provided for shorter lengths, that 
is, there exists an optimal   word of length p+q−gcd(p,q)−1having p   and q   as periods but not 
having gcd(p,q) as period [5]. Extensions of Fine and Wilfʼ s result to more than two periods 
have been given. For instance, in [6], Constantinescu and Ilie give an extension for an arbitrary 
number of periods and prove that their lengths are optimal. 

Fine and Wilf’s result has been generalized to partial words [1], [2], [3], [10], [11], [12] and [14]. 
Some of these papers are concerned with weak   periodicity, a notion not discussed in this paper 
(a weak period   of a partial word u   over an alphabet A   is a positive integer p   such 
that u(i)=u(i+p) wheneveru(i),u(i+p)∈A). The papers that are concerned with strong periodicity 
refer to the basic fact, proved by Shur and Konovalova (Gamzova) in [12], that for positive 
integers h  , p   and q  , there exists a positive integer l   such that a partial word u   with h   holes, 
two periods p   and q  , and length at least l   has periodgcd(p,q). The smallest such integer is 
called the optimal length and it will be denoted by L(h,p,q). They gave a closed formula for the 
case where h=2 (the cases h=0 or h=1 are implied by the results in [8] and [1]), while in [11], 
they gave a formula in the case where p=2 as well as an optimal asymptotic bound for L(h,p,q) in 
the case where h   is “large.” In [3], Blanchet-Sadri et al. gave closed formulas for the optimal 
lengths when q   is “large,” whose proofs are based on connectivity in the so-called (p,q)-
periodic graphs. The (p,q)-periodic graph of size l   is the graph G=(V,E), with V={0,1,…,l−1}, 
such that{i,j}∈E if and only if  or . 

In this paper, we study two types of vertex connectivity in the (p,q)-periodic graphs: the 
modified degree connectivity and r  -set connectivity where . Although the graph-
theoretical approach is not completely new, our paper gives insights into periodicity in partial 
words and provides an algorithm for determining L(h,p,q) in all cases. Our paper also shows how 
the closed formulas can be derived from our methods. 

We end this section by reviewing basic concepts on partial words. Fixing a nonempty finite set 
of letters or analphabet A, finite sequences of letters from A   are called (full) words   over A  . 



The number of letters in a word u  , or length   of u  , is denoted by |u|. The unique word of length 
0, denoted by ε, is called the empty  word. A word of length n   over A   can be defined by a 
total function u:{0,…,n−1}→A and is usually represented as u=a0a1…an−1 with ai∈A. The set of 
all words over A   of finite length (greater than or equal to zero) is denoted by A⁎. A partial 
word u   of length n   over A   is a partial function u:{0,…,n−1}→A. For 0⩽i<n, if u(i) is defined, 
then i   belongs to the domain   of u  , denoted by i∈D(u), otherwise i  belongs to the set of 
holes   of u  , denoted by i∈H(u). The set of distinct letters of A   occurring in u   is denoted 
by α(u). For convenience, we will refer to a partial word over A   as a word over the enlarged 
alphabet A⋄=A∪{⋄}, where ⋄∉A represents a “do not know” symbol or hole. So a partial 
word u   of length n   over A   can be viewed as a total 
function u:{0,…,n−1}→A⋄ where u(i)=⋄ wheneveri∈H(u). 

2. (p,q)-Periodic graphs 

In this section, we discuss the fundamental property of periodicity, our goal, and some initial 
results. We can restrict our attention to the case where p   and q   are coprime, that is gcd(p,q)=1, 
since it is well known that the general case can be reduced to the coprime case (see, for 
example, [1] and [11]). Also, we assume without loss of generality that 1<p<q. 

Fine and Wilf show that L(0,p,q)=p+q−gcd(p,q)[8], Berstel and Boasson that L(1,p,q)=p+q[1], 
and Shur and Konovalova prove L(2,p,q) to be 2p+q−gcd(p,q)[12]. Other results include the 
following. 

Theorem 1. 

(See   [3] and [11].) Let  q>2be an integer satisfying  gcd(2,q)=1. Then 

 

Theorem 2. 

(See   [3].) Let p and q be integers satisfying  1<p<qand  gcd(p,q)=1. If  , then 

 

 

The problem of finding L(h,p,q) is equivalent to a problem involving the vertex connectivity of 
certain graphs, as described in [3], which we now discuss. 

Definition 1. 



Let p   and q   be integers satisfying 1<p<q and gcd(p,q)=1. The (p,q)-periodic graph   of 
size l   is the graph G=(V,E) where V={0,1,…,l−1} and for i,j∈V, the pair {i,j}∈E if and only 
if  or . 

The p-class of vertex i   is . A p-connection   (or p-edge  ) is an 
edge {i,j}∈E such that . If an edge {i,j} is a p-connection, then i and j are p-
connected. Similar statements hold for q-classes, q-connections and pq-classes, pq-connections. 

Fig. 1 illustrates a (p,q)-periodic graph. 

 

Fig. 1. The (3,4)-periodic graph of size 11. The bold connections are q-edges, while the lighter 
ones are p-edges. 

The (p,q)-periodic graph G of size l can be thought to represent a full word u of length l with 
periods p and qas well as a partial word w with h holes of length l with periods p and q. Key 
observations are: 

• Positions in u correspond to vertices in G. 
• If there is a path from vertex i   to vertex j  , then u(i)=u(j) (so if G is connected, 

then u has period 1). 
• A hole in w corresponds to the removal of the associated vertex from G. 
• If the h vertex removals disconnect G, then w need not have period 1. 

Recall that a graph has vertex connectivity κ   if it can be disconnected with a suitable choice 
of κ   vertex removals, but cannot be disconnected by any choice of κ−1 vertex removals [9]. 
Thus, our goal, which is to determine L(h,p,q) in all cases (when gcd(p,q)=1), can be restated in 
terms of vertex connectivity. 

Lemma 1. 



The length  L(h,p,q)is the smallest size of a  (p,q)-periodic graph with vertex connectivity at 
least  h+1. 

Throughout the paper, we will find it useful to group together p  -classes whose smallest 
elements are congruent modulo r   where . We do so by introducing the r-set   of 
vertex i  , where i∈{0,1,…,r−1}, which is the set 

 

Fig. 2 shows some (p,q)-periodic graphs in terms of . 

 

Fig. 2. Some (p,q)-periodic graphs where the vertical lines represent p-classes, while the 
diagonal lines represent q-classes. Theq-edges wrap around at the dashed lines. All vertices in 
vertical and diagonal lines are connected to each other. In other words, lines represent several 
“normal” edges. In the first graph, p = 13, q = 14, and r = 1; this is the (13,14)-periodic graph of 
size 65 where the p-classes are grouped into one r-set (the r-set of vertex 0). In the second 
graph, p = 13, q = 15 andr = 2; this is the (13,15)-periodic graph of size 65 where the p-classes 
are grouped into two r-sets (the r-set of vertex 0 and the r-set of vertex 1). 

3. Connectivity in (p,q)-periodic graphs 



Our algorithm to calculate L(h,p,q) is based on connectivity in (p,q)-periodic graphs. In this 
section, we discuss modified degree connectivity and r  -set connectivity in these graphs, 
where . Using Theorem 1 and Theorem 2, we can restrict our discussion to the case 

where p≠2 and . 

Let G=(V,E) be a graph. A disconnection   of G   is a partition {V1,V2,H} of V   (that 
is,V=V1∪V2∪H and V1, V2, H   are mutually disjoint), such that neither V1 nor V2 is empty, and 
forv1∈V1, v2∈V2, {v1,v2}∉E. An optimal disconnection   is a disconnection such that the 
cardinality ofH   is κ  , where κ   is the vertex connectivity of G  . The set H   represents the 
vertices removed in a disconnection, while the sets V1 and V2 represent the vertices disconnected 
from each other in a disconnection. 

If G   is the (p,q)-periodic graph of size l   for some p  , q   and l   and {V1,V2,H} is an optimal 
disconnection of G  , then we cannot disconnect G   within a p  -class since p  -classes form 
complete subgraphs. In other words, a p  -class cannot contain elements of both V1 and V2, that 
is, for a p  -class C  , either C⊂V1∪H or C⊂V2∪H. We say that a 
disconnection {V1,V2,H} of G   disconnects a union of p  -classes P   if V1⊂P and P⊂V1∪H, 
or V2⊂P and P⊂V2∪H. Similarly, a q  -class cannot both contain elements in V1 and V2. 

Suppose we want to disconnect a single p  -class C   from G  . For a q  -class C′ of G  , all of the 
vertices of C′ within C   or all of the vertices of C′ outside of C   must be removed. For l⩾2q, a 
vertex i∈C has q  -connections with vertices outside of C  . Each of these q  -connections must be 
broken in order to disconnectC   from G  . The most efficient way to do so is to remove i   itself, 
since i   may have more than one q  -connection. However, if we remove all of C   from G  , we 
have not formed a disconnection (V1 or V2 is empty). Thus, we do not remove the vertex 
in C   contained in the smallest q  -class in order to minimize the number of vertex removals 
required to disconnect C  . So, if each vertex i∈C is q-connected to some vertexj outside 
of C such that no other vertex in C is q-connected to j (no vertex in C is q-connected to i), then 
the most efficient way of disconnecting C from G is to disconnect a vertex of lowest degree in C. 

When l⩽pq, any two distinct vertices within the same p-class belong to different q-classes. In 
this case, the most efficient way to disconnect a single p-class from G is to disconnect a single 
vertex of lowest degree inG (this is called a minimum degree disconnection). 

When l>pq, distinct vertices within the same p-class may belong to the same q-class (that is to 
say, distinct vertices may be both p- and q-connected, or pq-connected). In this case, it is more 
efficient to disconnect the entire pq-class in order to disconnect a single p-class from G. For a 
vertex i in V, vertices that are pq-connected to i share all other connections with i, and thus 
should not be counted in the number of vertices required to disconnect i as they are disconnected 
when i is disconnected. Thus, we introduce the idea of  “modified” degree. 

Definition 2. 



Let p   and q   be integers satisfying 1<p<q and gcd(p,q)=1. Let G=(V,E) be the (p,q)-periodic 
graph of size l  , and let i∈V. 

• The degree   of i  , denoted d(i), is the number of vertices connected to i, that is, 

equation(1) 

 

The first term gives the number of p-connections, the second term the number of q-connections, 
and the third term the number of pq-connections. 

• The modified degree   of i  , denoted d⁎(i), is the number of vertices that are either p- 
or q-connected to i, but not pq-connected to i, that is, 

equation(2) 

 

In (2), we subtract 2 times the number of pq  -connections: once because we double counted 
them, and again because vertices that are pq  -connected are connected to the same vertices, so 
disconnecting one vertex will also disconnect all the vertices pq  -connected to it. Note that 
when l⩽pq, d(i)=d⁎(i). When l>pq, minimum degree disconnections are replaced by minimum 
modified degree disconnections. Fig. 3 illustrates a minimum modified degree disconnection in 
some (p,q)-periodic graph. 

 



Fig. 3. The (4,5)-periodic graph of size 47. This figure depicts an optimal disconnection where 
the dashed vertices are in H  , the bold vertices are in V2, and the rest of the vertices are in V1. 
Notice that the vertices in V2 have the minimum modified degree. They are all pq-connected to 
each other, and are p- or q-connected to the vertices in H. Increasing the size of the graph by 1 
gives this pq-class one more p-connection, thereby increasing the connectivity of the graph by 1. 

Definition 3. 

For a (p,q)-periodic graph G  , a minimum modified degree disconnection   is a disconnection that 
disconnects vertices of lowest modified degree in an entire pq  -class from the other pq  -classes. 
We define the modified degree connectivity   of G  , denoted κd, to be the smallest number of 
vertex removals required to make a minimum modified degree disconnection, and denote the 
minimum size of G   such that κd=h+1by ld(h,p,q). 

Usually, disconnecting more than one p-class takes more holes than individually disconnecting 
any one p-class, because in general, a set of p-classes has more connections with the rest of the 
graph than any singlep-class. However, disconnecting entire r-sets may prove to be efficient 
when l is small, as the graph “bottlenecks” between r-sets (that is, fewer q-classes span r-sets 
than connect p-classes within an r-set). 

Definition 4. 

For a (p,q)-periodic graph G  , let . An r  -set disconnection   is a disconnection that 
disconnects an entire r  -set from the other r  -sets. We define the r  -set connectivity   of G  , 
denoted κr, to be the smallest number of vertex removals required to make an r  -set 
disconnection, and denote the minimum size of G   such that κr=h+1 by lr(h,p,q). 

Thus, if G   is the (p,q)-periodic graph of size l   for l>2q, then either a modified degree 
disconnection or anr-set disconnection will give an optimal disconnection of G. 

Note that the sizes at which our graphs change connectivity are the optimal lengths in question. 
If the (p,q)-periodic graph of size l   has vertex connectivity κ   while the (p,q)-periodic graph of 
size l+1 has vertex connectivity κ+1, then L(κ,p,q)=l+1. Similarly, if the (p,q)-periodic graph of 
size l   has modified degree connectivity κd (respectively, r  -set connectivity κr) while the (p,q)-
periodic graph of size l+1 has modified degree connectivity κd+1 (respectively, r  -set 
connectivity κr+1), then ld(κd,p,q)=l+1(respectively, lr(κr,p,q)=l+1). 

Algorithm 2, which will be described in Section 5, will 
find L(h,p,q) when 1<p<q and gcd(p,q)=1, based on the calculation of 
both lr(h,p,q) and ld(h,p,q) lengths. As mentioned earlier, if p=2 thenL(h,p,q) is already known 
by Theorem 1. Otherwise, if , then L(h,p,q) is also already known by Theorem 2. And 
if , then lr(h,p,q) will be calculated using Theorem 3 andld(h,p,q) using Theorem 
4 (and Algorithm 1). 



 

Algorithm 1.  

Find ld(h,p,q) when 1 < p < q, gcd(p,q)=1, and h < p + q − 2. 

4. r-Set connectivity 

Fig. 4 depicts an r  -set disconnection in some (p,q)-periodic graph of size some multiple of p  , 
whereq=mp+r with 0<r<p. This figure will be useful in understanding the arguments provided in 
the proof of the following theorem which gives a formula for lr(h,p,q). 

 

Fig. 4.  An r-set disconnection for p = 16, q = 35 = 2p + 3, r = 3, and l = 9p = 144 (this length is 
not optimal). This is the (16,35)-periodic graph of size 144 where the p-classes are grouped into 



three r-sets (the r-set of vertex 0, the r-set of vertex 1, and the r-set of vertex 2). Here we are 
disconnecting the r-set of vertex 2 from the two other r-sets. 

Theorem 3. 

Let p and q be integers satisfying  1<p<qand  gcd(p,q)=1, and set  q=mp+rwhere  0<r<p. Then 

 

where 

• β=2mγ+ϕ; 

• γ is the greatest integer strictly less than  ; 

• ϕ is the greatest integer strictly less than  ; 
• δ=h+1−2(mγ+ϕ)(γ+1). 

Proof. 

Consider the (p,q)-periodic graph of size l   where q=mp+r with 0<r<p. 
Set l=kp+r′ where 0⩽r′<p. There are k   complete rows in each r  -set (and an additional partial 
row when r′>0). In the columns on either side of any r  -set, there are m+1 vertices which do not 
have q  -connections to the adjacent r  -set, so exactly β=k−(m+1) vertices are q-connected to the 
adjacent r-set. 

Consider two adjacent r  -sets. Looking at the q  -classes that connect these r  -sets, the 
bottom m   of theseq  -classes have 1 vertex in the left r  -set. The next m q  -classes have 2 
vertices in the left r  -set, and so on for the first k−(m+1)q  -classes. The left side of the right r  -
set is anti-symmetric to this: the top m q  -classes each have 1 vertex in the right r  -set, and the 
next m q  -classes each have 2 vertices and so on working down. When breaking these q  -
connections it is best to remove all the vertices from the smaller side of the q  -class. Thus, for 
the bottom half of the q  -classes we remove vertices from the left side, and for the top half we 
remove the same number of vertices from the right side. If β=γ(2m)+ϕ for 0⩽ϕ<2m, then the 
number of vertices we must remove to separate these adjacent r  -sets is 

 

Since an r  -set disconnection requires separating adjacent r  -sets twice, we have 

 



Since γ   is an integer and ϕ<2m, we can find γ   in terms of κr and m by solving for when ϕ is 
equal to zero and then taking the floor. Using the quadratic formula, we calculate 

 

We solve for ϕ   and find . From the definition of β   we have k=2mγ+ϕ+m+1. 

The length is never optimal when r′=0 because κr only increases for nonzero values of r′, as 
described below. We therefore want to select γ   and ϕ   such that they give us a value of κr that 
is strictly less thanh+1. We will make room for the remaining vertex removals by 
adding r′ vertices. 

Now we need to calculate r′ by determining at exactly which sizes the r  -set connectivity 
actually increases. Starting with size l=kp, if we increase the size by r  , then the number of 
vertex removals required to break any r  -set connection increases by 1 because between each 
connected pair of r  -sets there is one more q  -connection. Thus, the r  -set connectivity increases 
by 2. Notice that every connected pair of r  -sets requires the same number of vertex removals to 
separate them. Thus, if we remove the last vertex we added, then ther  -set connectivity will have 
only increased by 1 from the previous size. After decreasing the size by one more vertex the r  -
set connectivity will be back down to where it was for l=kp. The same thing happens if we add 
another r   vertices and continue until we reach the r  -set connectivity of the graph of 
size l=(k+1)p. 

If we have calculated k   for a given p  , q   and h   and define δ   to be the difference between 
the r  -set connectivity that we are looking for and the r  -set connectivity at length l=kp, 
then δ=h+1−2(mγ+ϕ)(γ+1) and we can calculate . So 

 

as desired.  □ 

Using Theorem 3 we have calculated the lengths in Table 1. 

Table 1. Some lr(h,p,q) lengths. The empty entries of the table are 
where  (see Theorem 2). 

 h = 3 h = 4 h = 5 h = 6 h = 7 
p < q < 2p 2p + q 3p + q − 1 3p + q 2p + 2q − 1 2p + 2q 
2p < q < 3p   3p + q 4p + q − 1 4p + q 
3p < q < 4p     4p + q 



Let us show how Table 1ʼ s entry corresponding to 2p<q<3p and h=5 is calculated. 
Set q=mp+r=2p+rwhere 0<r<p. Here γ   is the greatest integer strictly less than 

 

and so γ=0. Also ϕ   is the greatest integer strictly less than 

 

and so ϕ=2. Thus 

β=2mγ+ϕ=2(2)(0)+2=2 

and 

δ=h+1−2(mγ+ϕ)(γ+1)=5+1−2(2(0)+2)(0+1)=2. 

Then 

 

as desired. 

By comparing the lr(h,p,q) lengths in Table 1 calculated using Theorem 3 to the ld(h,p,q) lengths 
that can be calculated using Theorem 4 and Algorithm 1 from Section 5, it turns out that r  -set 
disconnections are only more efficient when h=4 and  (detailed calculations for the cases 
where 3⩽h⩽7 are provided in the proofs of Theorem 9, Theorem 10, Theorem 11, Theorem 
12 and Theorem 13). As we increase the length beyond the values shown in Table 1, 
experimental evidence suggests that r-set disconnections will continue to become less efficient 
because r-sets now gain q-connections faster than any pq-class gains connections. 

5. Modified degree connectivity 

Let G   be the (p,q)-periodic graph of size l  . We now reduce the size of G   modulo pq  , that is, 
we reduce the case where l⩾pq to that where l<pq. The idea is to write l=τpq+ω for some 
nonnegative integersτ,ω satisfying ω<pq and then show that the number of vertices we must 
remove to disconnect vertex i  and all the vertices pq  -connected to it is given by 

equation(3) 



 

where we use the formula in (2) for the modified degree of i   in G  , d⁎(i), and where we denote 
by  the modified degree of i   in the subgraph G′ of G   that contains only the 
last ω   vertices. Solvingd⁎(i)=h+1 gives the following theorem. 

Theorem 4. 

Let p and q be integers satisfying  1<p<qand  gcd(p,q)=1. Then the 

equality  ld(h,p,q)=τpq+ωholds, where  and  0⩽ω<pq. Moreover, 

 

Proof. 

Let G   be the (p,q)-periodic graph of size l  . Suppose l=τpq+ω for nonnegative 
integers τ,ω with ω<pq. If ω=0 then, using (2), every vertex i   has the same modified degree: 

d⁎(i)=(τq−1)+(τp−1)−2(τ−1)=τ(p+q−2). 

If ω>0 then define G′ to be the subgraph of G   that contains only the last ω   vertices, that is, the 
vertices τpq,…,τpq+ω−1. Each of them has τ(p+q−2) vertices among the first τ
pq   vertices,0,1,…,τpq−1, to which it is either p  -connected or q  -connected but not pq  -
connected. Thus, the modified degree of a vertex i   in G′ is equal to τ(p+q−2)+dG

′(i), 
where dG

′(i) is the degree of i   inG′. In other words, we can find the degree of the 
vertex i   within the subgraph G′, and add this degree toτ(p+q−2) to get its modified degree 
in G  . Thus, we have Eq. (3). The positions of these last ω  vertices modulo pq   are all less 
than , and any two positions in the same pq-class have the same modified degree. 
Thus we know that one of them will have the lowest modified degree of the graph. 

We want d⁎(i)=h+1. Since τ   is an integer and , we can use the division 

algorithm and Eq. (3) to get  and . The 
length ld(h,p,q) being the smallest one at which the minimum modified degree is h+1, the result 
follows.  □ 

We have now reduced cases where l⩾pq to those cases where l<pq, so now we will 
assume l=ω<pq. 

Theorem 5. 

Let p and q be integers satisfying  1<p<qand  gcd(p,q)=1. Define the function   



 

Then the  (p,q)-periodic graph of size ω has a modified degree connectivity 

 

Proof. 

A vertex i   in a (p,q)-periodic graph of size ω   has p  -connections 

if  and p  -connections if . Similarly, i   has q  -connections 
if  and q  -connections if . We add together the number of p  -
connections and the number of q  -connections to find that the degree of i   is  plus  minus 
either 0,1 or 2 depending on the value of i  . We can assume that ω⩾p because there will never 
be an optimal length with , since there are no p  - or q  -connections 
within this range. Thus, we can assume that the p−1 vertex exists and we know that it satisfies 
the condition .  □ 

We now state our algorithm for finding ld(h,p,q). 

Theorem 6. 

Given a number of holes h and two periods p and q satisfying  1<p<q,  gcd(p,q)=1, 
and  h<p+q−2,  Algorithm 1 computes the length  ld(h,p,q). 

Proof. 

From Theorem 5, we can see that κd increases whenever f(ω,p,q) changes from 2 to 1, or 
whenever ω  increases to a multiple of either p   or q   while f(ω,p,q) stays constant. 

Remark 1. 

If ld(h,p,q)=ω and f(ω,p,q)=2, then ω=n1p or ω=n2q for some positive integers n1 and n2. 

Since adding a new vertex never decreases the modified degree connectivity of these (p,q)-
periodic graphs, f(ω,p,q) can only change from 1 to 2 at multiples of p   and q  . If ω=n1p for a 
positive integer n1, then a vertex i   in the q  -class 
of q−1 satisfies  and , 
sof(n1p,p,q)=2 for n1p>q and f(n1p,p,q)=1 for n1p<q. Similarly, f(n2q,p,q)=2 for any positive 
integer n2. 



To calculate n1 when f(ω,p,q)=2 we use the formula . We can solve 

as follows:  or . So if a solution exists, it is 

equation(4) 

 

If there is no solution for n1 satisfying , then there must be a solution 

for n2satisfying  and we calculate 

equation(5) 

 

We now consider the f(ω,p,q)=1 case. Note that f(ω,p,q)=1 for all ω<q. For these cases, the 
vertices can only have p  -connections, and we can see that ld(h,p,q)=(h+2)p so long 

as . 

For , optimal ld(h,p,q) lengths occur when vertices of minimum degree gain a 
new p  - or q  -connection. First, there is always a vertex of minimum degree in either the p  -
class of p−1 or the q  -class ofq−1. This is because if we pick any vertex i  , other 
than p−1 or q−1, that has minimum degree then there is some vertex i+i′ in either the p  -class 
of p−1 or the q  -class of q−1 that has no more p- and q-connections than i itself. This leads to the 
following remark. 

Remark 2. 

If ld(h,p,q)=ω, f(ω,p,q)=1, and , then  for some positive 
integers  and . For , the vertices of lowest degree are in the symmetric 
positions  and . 

We now focus on finding these positions  and . If f(ω,p,q) changes from 2 to 1 
when the  vertex gains a q  -connection, then we see from the definition of f(ω,p,q) that 
the  vertex must have a larger value modulo q   than the other vertices in the p  -class 
of p−1. Thus, we can say that  for all positive 
integers  where . Similarly, we must 
have  for all positive integers  where . 
Also,  must fall between the f(ω,p,q)=2 solutions for ld(h−1,p,q) andld(h,p,q).  □ 



For , the mp−1 vertex has the lowest degree in a large number of cases when the size of 
the(p,q)-periodic graph is less than pq   (keep in mind that we can reduce any case to one where 
the size is less than pq  ). The following lemma identifies many of these cases. We then use this 
knowledge to find a large number of ld(h,p,q) lengths in the theorem that follows. 

Lemma 2. 

Let p and q be integers satisfying  1<p<qand  gcd(p,q)=1. Let G be the  (p,q)-periodic graph of 
size l, let  q=mp+rwhere  0<r<p, and let  l=nq+r1where  0⩽r1<q. Let  mp⩽l⩽pq. If  
or  , then the  mp−1vertex has minimum degree. 

Proof. 

We require l⩾mp so the mp−1 vertex exists, and we require l⩽pq so we do not have vertices that 
are both p  - and q  -connected to each other. We have that l=nq+r1=n(mp+r)+r1=mnp+nr+r1, 

so . A vertex in the p  -class of i   has p  -connections 

if  or p  -connections if . Similarly, the 
number of q  -connections for a vertex in the q  -class 
of j   is n   if  or n−1 if . The mp−1 vertex is in the p  -class of p−1 so it 

always has p  -connections since . The mp−1 vertex is in the q  -
class of mp−1 and so it has n−1q  -connections if r1⩽mp−1 and has n q  -connections 
if mp⩽r1<q. The degree of the mp−1 vertex is clearly minimal when r1<mp, that is, 
when . 

However, if mp⩽r1⩽mp+s for some 0⩽s<r, then the vertices in the q  -class of mp+s have one 
fewerq  -connections than any other vertex, and may have the same number of p  -connections as 
the mp−1vertex, giving them a lower degree than the mp−1 vertex. These vertices are of the 
form(mp+s)+tq=mp+s+t(mp+r)=(t+1)mp+tr+s for some nonnegative 
integer t   satisfyingmp+s+tq⩽l−1. Thus, a vertex mp+s+tq falls in the p  -class of . 

Thus, vertices in the q  -class of mp+s have p  -connections if and only 
if  for all integers t∈{0,…,n−1} and s∈{r1−mp,…,r−1}. If this is the case, 
then these vertices have one more p  -connection than the mp−1 vertex and, therefore, do not 
have lower degree. 

Since t⩽n−1 and s⩽r−1, we have that tr+s⩽nr−1. Note that if , 
then  for all t∈{0,…,n−1} and s∈{r1−mp,…,r−1}. Thus, 
if , then the mp−1 vertex has lowest degree in G.  □ 

The following theorem gives ld(h,p,q) when the mp−1 vertex has the minimum degree in the 
graph of size ld(h,p,q)−1. 



Theorem 7. 

Let p and q be integers satisfying  1<p<qand  gcd(p,q)=1. Let  q=mp+r, where  0<r<p. 
Define  n1as calculated using Eq. (4) and  n2as calculated using Eq. (5), and 

define  ω′=min{n1p,mp+(n2−1)q}. Let  mp⩽ω′⩽pq. If  or  , 
then  ld(h,p,q)=ω′. 

Proof. 

Let G   denote the (p,q)-periodic graph of size l  . If we restrict the size so 
that mp⩽l⩽pq with  or , then by Lemma 2 the 
vertex mp−1 of G   has lowest degree. Thus, within these ranges, optimal ld(h,p,q) lengths occur 
whenever the mp−1 vertex gains a p- or q-connection. 

The mp−1 vertex gains a p  -connection exactly when l=n1p with n1>m. 

The mp−1 vertex gains a q  -connection exactly when  for some positive integer . 
This fits the form described in Remark 2 where . We search 
for  satisfying . Then,  if and 
only if such an integer  exists. Since mp<q and n2q is the smallest multiple of q   greater 
than n1p, any such  satisfying the inequalities must be equal to n2−1. We then know 
that , so we can now say that  if and 
only if  is less than n1p. Otherwise, ld(h,p,q)=n1p.  □ 

We now state our algorithm for finding L(h,p,q). 

Theorem 8. 

Given a number of holes h and two periods p and q satisfying  1<p<q 
and  gcd(p,q)=1,   Algorithm2 computes the optimal length  L(h,p,q). The time for 
computing  ld(h,p,q)is linear in p and q and constant in h. 

 

Algorithm 2.  

Find L(h,p,q) when 1 < p < q and gcd(p,q)=1. 



6. Closed formulas 

Using the ideas of r  -set and modified degree connectivities described in this paper, our methods 
can be used to prove closed formulas for any given number of holes (however, as the number of 
holes increases, the proofs become very tedious). Our calculations, performed for h=3 to h=7, 
show that an r  -set disconnection is strictly more efficient than any modified degree 
disconnection, or lr(h,p,q)>ld(h,p,q), if and only if h=4, p>2, and , in which 
case, L(h,p,q)=q+3p−1. 

We now provide details for the closed formulas in the cases where 3⩽h⩽7. These five results 
confirm five conjectures stated in [3]. 

Theorem 9. 

Let p and q be integers satisfying  2<p<qand  gcd(p,q)=1. Then  L(3,p,q)is  p+2qif  ,   4p 
if  , and  2p+qif  q>2p. 

Proof. 

Let q=mp+r for some positive integers m   and r   such that 0<r<p, and let G   denote the (p,q)-
periodic graph of arbitrary size. The case where q>2p falls within the domain of Theorem 2. To 
find L(3,p,q) in the case where q<2p, we must find the sizes of G   at which r  -set and modified 
degree connectivities change from 3 to 4 (that is, lr(3,p,q) and ld(3,p,q)), and take the maximum. 

First we consult Table 1 and find that lr(3,p,q)=2p+q when q<2p. Now we find ld(3,p,q) using the 
algorithm described in Section 5. Let ld(3,p,q)=τpq+ω where 0⩽ω<pq. From Theorem 4, we see 

that . Since in this case h+1=4 and 5⩽p+q−2, τ=0 (we also see 
that (h+1)mod(p+q−2)=4). Thus ld(3,p,q)=ω for some ω<pq. 

First, suppose f(ω,p,q)=2. We find that in this 
case, ω=4p when  and ω=3q when . 

Now, suppose f(ω,p,q)=1. Note that . For , the multiple of q   smaller than 
3q   that is largest modulo p   is 2q  . Since 3p<p+2q<3q we see that ld(3,p,q)=p+2q. 
For , the multiple of p   smaller than 4p   that is largest modulo q   is p  . 
Since 3p<p+2q<4p we see thatld(3,p,q)=p+2q. For , we find that the f(ω,p,q)=2 case 
is optimal. Indeed, the multiple ofp   smaller than 4p   that is largest modulo q   is 3p  . Since 
3p   has no q  -connections between 2q   and 4p  ,ld(3,p,q)=4p. 

Since L(3,p,q)=max{ld(3,p,q),lr(3,p,q)} and 2p+q<2q+p when  and 2p+q<4p when 

, we have that ld(3,p,q) is greater on these intervals. The result follows.  □ 



Theorem 10. 

Let p and q be integers satisfying  2<p<qand  gcd(p,q)=1. Then  L(4,p,q)is  q+3p−1if  
,  q+3pif  , and  q+3p−1if  q>2p. 

Proof. 

Let q=mp+r for some positive integers m   and r   such that 0<r<p, and let G   denote the (p,q)-
periodic graph of arbitrary size. The case where q>2p falls within the domain of Theorem 2. To 
find L(4,p,q) in the case where q<2p, we must find the sizes of G   at which r  -set and modified 
degree connectivities change from 4 to 5 (that is, lr(4,p,q) and ld(4,p,q)), and take the maximum. 

First we consult Table 1 and find that lr(4,p,q)=3p+q−1 when q<2p. Now we find ld(4,p,q) using 
the algorithm described in Section 5. Let ld(4,p,q)=τpq+ω where 0⩽ω<pq. From Theorem 4, we 

see that . In this case, h+1=5. Note that p+q−2=5 when p=3 and q=4, 
and p+q−2>5 otherwise. When p=3 and q=4, we have that τ=1 and, since in this 
case (h+1)mod(p+q−2)=0, ω=0, andld(4,3,4)=τpq=12. Since lr(4,3,4)=3p+q−1=12, we have 
that L(4,3,4)=12. 

When p>3 or q>4, since p+q−2>5, we have τ=0, and (h+1)mod(p+q−2)=5. Thus ld(4,p,q)=ωfor 
some ω<pq. 

First, suppose f(ω,p,q)=2. We find that in this case, ω=5p when 

, ω=3q when , and ω=4p when . Since 4p⩽lr(4,p,q)=q+3p−1, we have no need 

to check thef(ω,p,q)=1 solution when , and we see that in this case, L(4,p,q)=q+3p−1. 

Now, suppose f(ω,p,q)=1. Note that . For , the multiple of q   smaller than 
3q  that is largest modulo p   is q   if  and 2q   if . If , we see that 2q   has 
no p  -connection between 4p   and 3q  , and so in this case ld(4,p,q)=3q. If , q   has a p  -
connection between 4p  and 3q  , namely 3p+q, and so in this case ld(4,p,q)=3p+q. 

For , the multiple of p   smaller than 5p   that is largest modulo q   is 3p  . We see that 
3p   has a q  -connection between 4p   and 5p  , namely3p+q, and so in this case ld(4,p,q)=3p+q. 
Since L(4,p,q)= max{ld(4,p,q),lr(4,p,q)}, and3q⩽3p+q−1 when  and 3p+q>3p+q−1, we 
have our result.  □ 

Theorem 11. 

Let p and q be integers satisfying  2<p<qand  gcd(p,q)=1. Then  L(5,3,4)=18. If  p≠3or  q≠4, 

then  L(5,p,q)is  3q+pif  ,   5p if  ,   3q if  ,   6p if  2p<q<3p, 
and  q+3pif  3p<q. 



Proof. 

Let q=mp+r for some positive integers m   and r   such that 0<r<p, and let G   denote the (p,q)-
periodic graph of arbitrary size. The case where q>3p falls within the domain of Theorem 2. To 
find L(5,p,q) in the case where q<3p, we must find the sizes of G   at which r  -set and modified 
degree connectivities change from 5 to 6 (that is, lr(5,p,q) and ld(5,p,q)), and take the maximum. 

First we consult Table 1 and find that lr(5,p,q) is 3p+q. Now we find ld(5,p,q) using the algorithm 
described in Section 5. Let ld(5,p,q)=τpq+ω where 0⩽ω<pq. From Theorem 4, we see 

that . In this case, h+1=6. Note 
that p+q−2=5 when p=3 and q=4, p+q−2=6 when p=3 andq=5, and p+q−2>6 otherwise. 
When p=3 and q=4, we have that τ=1 and, since in this 
case(h+1)mod(p+q−2)=1, ω=ld((h+1)mod(p+q−2)−1,p,q)=ld(0,p,q)=p+q−1=6. We have 
that ld(5,3,4)=τpq+ω=18. Since lr(5,3,4)=3p+q=13, we have thatL(5,3,4)=max{18,13}=18. 
When p=3 and q=5, we have that τ=1 and, since in this case(h+1)mod(p+q−2)=0, ω=0, 
and ld(5,3,5)=τpq=15. Since lr(5,3,5)=3p+q=14, we have thatL(5,3,5)=max{15,14}=15. 

When p>3 or q>5, since p+q−2>6, we have τ=0, and (h+1)mod(p+q−2)=6. Thus ld(5,p,q)=ωfor 
some ω<pq. 

First, suppose f(ω,p,q)=2. We find that in this case, ω   is 4q   when , 

5p   when , 3q  when , and 6p   when 2p<q<3p. 

Now, suppose f(ω,p,q)=1. Note that . For , the multiple of q   smaller than 
4q   that is largest modulo p   is 3q  . Since 3q   has a p  -connection between 4p   and 4q  , 
namely 3q+p,ld(5,p,q)=3q+p. 

For , the multiple of p   smaller than 5p   that is largest modulo q   is p  . We see 
that p   has a q  -connection between 4p   and 5p  , namely p+3q, and so ld(5,p,q)=p+3q. 

For , the multiple of p   smaller than 5p   that is largest modulo q   is 

3p   if  and 4p   if . If , we see that 4p   has no q  -connection between 3q   and 
5p  , and so ld(5,p,q)=5p. If , 3p   has no q  -connection between 3q   and 5p  , and 
so ld(5,p,q)=5p. 

For , the multiple of q   smaller than 3q   that is largest modulo p   is q  . We see 
that q   has no p  -connection between 5p   and 3q  , and so in this case ld(5,p,q)=3q. 



For 2p<q<3p, the multiple of p   smaller than 6p   that is largest modulo q   is 5p   if  and 

2p   if . If , 2p   has no q  -connection between q+3p−1 and 6p  , and so ld(5,p,q)=6p. 

If , 5p   has no q  -connection between q+3p−1 and 6p  , and so ld(5,p,q)=6p. 

Since L(5,p,q)= max{ld(5,p,q),lr(5,p,q)}, and 3p+q⩽3q+p, 3p+q⩽5p when 

,3p+q⩽3q when , and 3p+q⩽6p when 2p<q<3p, the result follows.  □ 

Theorem 12. 

Let p and q be integers satisfying  2<p<qand  gcd(p,q)=1. 

Then  L(6,3,4)=19,L(6,4,5)=20and  L(6,3,5)=21. Otherwise,  L(6,p,q)is   5p if  ,   4q 

if  ,   6p if  ,  2q+2pif  ,   7p if  , 
and  q+4p−1if  3p<q. 

Proof. 

Let q=mp+r for some positive integers m   and r   such that 0<r<p, and let G   denote the (p,q)-
periodic graph of arbitrary size. The case where q>3p falls within the domain of Theorem 2. To 
find L(6,p,q) in the case where q<3p, we must find the sizes of G   at which r  -set and modified 
degree connectivities change from 6 to 7 (that is, lr(6,p,q) and ld(6,p,q)), and take the maximum. 

First we consult Table 1 and find that lr(6,p,q) is 4p+q−1 when 2p<q<3p, 
and 2p+2q−1 whenq<2p. Now we find ld(6,p,q) using the algorithm described in Section 5. 

Let ld(6,p,q)=τpq+ω where0⩽ω<pq. From Theorem 4, we see that . In this 
case, h+1=7. Note 
that p+q−2=5 whenp=3 and q=4, p+q−2=6 when p=3 and q=5, p+q−2=7 when p=4 and q=5, 
and p+q−2>7otherwise. When p=3 and q=4 for instance, we have that τ=1 and, since in this 
case (h+1)mod(p+q−2)=2, ω=ld((h+1)mod(p+q−2)−1,p,q)=ld(1,p,q)=p+q=7. We have 
thatld(6,3,4)=τpq+ω=19. Since lr(6,3,4)=2p+2q−1=13, we have thatL(6,3,4)=max{19,13}=19. 

When p+q−2>7, we have τ=0, and (h+1)mod(p+q−2)=7. Thus ld(6,p,q)=ω for some ω<pq. 

First, suppose f(ω,p,q)=2. We find that in this case, ω   is 5p   when , 

4q   when , 6p  when , 3q   when , and 7p   when . 

Now, suppose f(ω,p,q)=1. Note that . For , the multiple of p   smaller than 
5p   that is largest modulo q   is p  . Since p   has no q  -connection between 4q   and 
5p  , ld(6,p,q)=5p. 



For , the multiple of q   smaller than 4q   that is largest modulo p   is 3q  , which has 
no p  -connection between 5p   and 4q  , and so ld(6,p,q)=4q. For , the multiple 
of q   smaller than 4q   that is largest modulo p   is 2q  , which has no p  -connection between 
5p   and 4q  , and sold(6,p,q)=4q. 

For , the multiple of p   smaller than 6p   that is largest modulo q   is 

5p   if  and 3p   if . For , we see that 5p   has no q  -connection between 

3q   and 6p  , and so in this caseld(6,p,q)=6p. If , 3p   has no q  -connection between 
5p   and 6p  , and so ld(6,p,q)=6p. 

For , the multiple of q   smaller than 3q   that is largest modulo p   is 2q  , which has 
a p  -connection between 6p   and 3q  , namely 2q+2p, and so ld(6,p,q)=2q+2p. 

For , the multiple of p   smaller than 7p   that is largest modulo q   is 

5p   if  and 2p   if . If , 2p   has a q  -connection between 6p   and 7p  , 

namely 2p+2q, and sold(6,p,q)=2p+2q. If , 5p   has no q  -connection between 6p   and 
7p  , and so ld(6,p,q)=7p. 

Since L(6,p,q)= max{ld(6,p,q),lr(6,p,q)}, and 2p+2q−1⩽5p when 

, 2p+2q−1⩽4qwhen , 2p+2q−1⩽6p when 

, 4p+q−1⩽2p+2q when , and4p+q−1⩽7p when , the result follows.  □ 

Theorem 13. 

Let p and q be integers satisfying  2<p<qand  gcd(p,q)=1. 
Then  L(7,3,4)=L(7,3,7)=21,  L(7,3,5)=23and  L(7,4,5)=28. 

Otherwise,  L(7,p,q)is  4q+pif  ,   6p if  ,   4q if  

,  q+5pif  ,   7p if  ,   3q if  ,  q+5pif  ,   8p 
if  3p<q<4p, and  q+4pif  4p<q. 

Proof. 

Let q=mp+r for some positive integers m   and r   such that 0<r<p, and let G   denote the (p,q)-
periodic graph of arbitrary size. The case where q>4p falls within the domain of Theorem 2. To 
find L(7,p,q) in the case where q<4p, we must find the sizes of G   at which r  -set and modified 
degree connectivities change from 7 to 8 (that is, lr(7,p,q) and ld(7,p,q)), and take the maximum. 

First we consult Table 1 and find that lr(7,p,q) is 4p+q when 2p<q<4p, and 2p+2q when q<2p. 
Now we find ld(7,p,q) using the algorithm described in Section 5. 



Let ld(7,p,q)=τpq+ω where 0⩽ω<pq. From Theorem 4, we see that . In this 
case, h+1=8. Note 
that p+q−2=5 when p=3 andq=4, p+q−2=6 when p=3 and q=5, p+q−2=7 when p=4 and q=5, p+q
−2=8 when p=3 and q=7, and p+q−2>8 otherwise. When p=3 and q=4, we have that τ=1 and, 
since in this case(h+1)mod(p+q−2)=3, ω=ld((h+1)mod(p+q−2)−1,p,q)=ld(2,p,q)=2p+q−1=9. We 
have that ld(7,3,4)=τpq+ω=21. Since lr(7,3,4)=2p+2q=14, we have thatL(7,3,4)=max{21,14}=21. 
When p=3 and q=5, we have that τ=1 and, since in this 
case(h+1)mod(p+q−2)=2, ω=ld((h+1)mod(p+q−2)−1,p,q)=ld(1,p,q)=p+q=8, 
andld(7,3,5)=τpq+ω=23. Since lr(7,3,5)=2p+2q=16, we have thatL(7,3,5)=max{23,16}=23. 
When p=3 and q=7, we have that τ=1 and, since in this case(h+1)mod(p+q−2)=0, ω=0. We have 
that ld(7,3,7)=τpq=21. Since lr(7,3,7)=4p+q=19, we have that L(7,3,7)=max{21,19}=21. 
When p=4 and q=5, we have that τ=1 and, since in this 
case(h+1)mod(p+q−2)=1, ω=ld((h+1)mod(p+q−2)−1,p,q)=ld(0,p,q)=p+q−1=8. We have 
that ld(7,4,5)=τpq+ω=28. Since lr(7,4,5)=2p+2q=18, we have thatL(7,4,5)=max{28,18}=28. 

When p+q−2>8, we have τ=0, and (h+1)mod(p+q−2)=8. Thus ld(7,p,q)=ω for some ω<pq. 

First, suppose f(ω,p,q)=2. We find that in this case, ω   is 5q   when , 

6p   when , 4q  when , 7p   when , 3q   when , and 

8p   when . 

Now, suppose f(ω,p,q)=1. Note that . For , the multiple of q   smaller than 
5q   that is largest modulo p   is 4q  . Since 4q   has a p  -connection between 5p   and 5q  , 
namely 4q+p, we getld(7,p,q)=4q+p. 

For , the multiple of p   smaller than 6p   that is largest modulo q   is p   if  and 

5p   if . If , we see that p   has a q  -connection between 5p   and 6p  , namely p+4q, 

and sold(7,p,q)=p+4q. If , 5p   has no q  -connection between 4q   and 6p  , and 
so ld(7,p,q)=6p. For , the multiple of p   smaller than 6p   that is largest modulo q   is 
4p  , which has no q  -connection between 4q   and 6p  , and so ld(7,p,q)=6p. 

For , the multiple of q   smaller than 4q   that is largest modulo p   is 

3q   if  and q   if . If , 3q   has no p  -connection between 6p   and 4q  , and 

so ld(7,p,q)=4q. If , q  has a p  -connection between 6p   and 4q  , namely q+5p, and 
so ld(7,p,q)=q+5p. 

For , the multiple of p   smaller than 7p   that is largest modulo q   is 5p  , which has 

a q  -connection between 6p   and 7p  , namely 5p+q, and so ld(7,p,q)=5p+q. For , the 



multiple of p   smaller than 7p   that is largest modulo q   is 2p  , which has no q  -connection 
between 3q   and 7p  , and so ld(7,p,q)=7p. 

For , the multiple of q   smaller than 3q   that is largest modulo p   is q   if  and 

2q   if . If , 2q   has no p  -connection between 7p   and 3q  , and so ld(7,p,q)=3q. 

If , q  has a p  -connection between 7p   and 3q  , namely q+5p, and so ld(7,p,q)=q+5p. 

For , the multiple of p   smaller than 8p   that is largest modulo q   is 5p  , which has 
a q  -connection between 7p   and 8p  , namely 5p+q, and so ld(7,p,q)=5p+q. For 3p<q<4p, the 

multiple ofp   smaller than 8p   that is largest modulo q   is 7p   if  and 3p   if . 

If , 3p   has no q  -connection between q+4p−1 and 8p  , and so ld(7,p,q)=8p. If , 
7p   has no q  -connection between q+4p−1 and 8p  , and so ld(7,p,q)=8p. 

Since L(7,p,q)= max{ld(7,p,q),lr(7,p,q)}, and 2p+2q⩽4q+p when 

, 2p+2q⩽6pwhen , 2p+2q⩽4q when , 2p+2q⩽5p+q when 

, 4p+q⩽7pwhen , 4p+q⩽3q when , 4p+q⩽q+5p when , 
and 4p+q⩽8pwhen 3p<q<4p, the result follows.  □ 

7. Conclusion 

Our goal was to give an algorithm for determining the minimum length L(h,p,q) which 
guarantees thatgcd(p,q) is also a period of any partial word having periods p and q, 
having h holes, and having at least that length, and to show how to use it to derive the closed 
formulas. 

A topic of future research is to use our approach to study partial words with number of holes h  , 
periods p  and q  , and length L(h,p,q)−1. We let Wh,p,q denote the set of all such words, and we 
let Vh,p,qdenote the set of all such words which do not have gcd(p,q) as a period. The 
sets PERh and VPERh are defined as follows: 

 

It turns out that VPER0 has remarkable combinatorial properties [7]. The following is a result 
from [3]concerning PER1, the proof of which we have simplified with the use of (p,q)-periodic 
graphs. 

Theorem 14. 

Let p and q be integers satisfying  1<p<qand  gcd(p,q)=1. 



1. Given a singleton set H satisfying  H⊂{0,…,p+q−2}∖{p−1,…,q−1},  W1,p,qcontains a unique 
partial word u   (up to a renaming  ) such that the cardinality of  α(u)is   2 and  H(u)=H. 

2. Given a singleton set H satisfying  H⊂{p−1,…,q−1},  W1,p,qcontains a unique word u such 
that  ‖α(u)‖=1and  H(u)=H. 

Proof. 

Let G   be the (p,q)-periodic graph of size p+q−1. We have from Fine and Wilfʼ s theorem 
that G   is connected. In G  , we have p p  -classes connected by p−1q  -connections, so removing 
any vertex that has a q  -connection will disconnect G   into two components, whereas removing 
a vertex with no q  -connections will not disconnect G  . We see that the vertices 
in {0,…,p+q−2}∖{p−1,…,q−1} each have a q  -connection while the vertices 
in {p−1,…,q−1} do not have any q-connections.  □ 

The following theorem, which gives a characterization of VPER2, answers positively a 
conjecture of [3]. 

Theorem 15. 

Let p and q be integers satisfying  1<p<qand  gcd(p,q)=1. The membership  u∈V2,p,qholds if and 
only if 

• H(u)={p−2,p−1}or  H(u)={q+p−1,q+p−2}or  H(u)={p−2,q+p−1}when  q−p=1; 
• H(u)={p−2,p−1}or  H(u)={q+p−1,q+p−2}or  H(u)={p−2,q+p−1}or  H(u)={p−1,q+p−2}

when  q−p>1. 

Proof. 

Let q=mp+r where m   is an integer and 0<r<p, and let G   be the (p,q)-periodic graph of 
size L(2,p,q)−1=2p+q−2. We will first consider the case when r=1. We can form a cycle in G   as 
follows: the 0 vertex is q  -connected to the q   vertex, which is p  -connected to the 1 vertex, 
which is q  -connected to the q+1vertex, and so on, until we have the q+p−1 vertex p  -connected 
to the 0 vertex. Note that this cycle visits all the p  -classes, as it visits the 0,1,2,…,p−1 vertices. 
The cycle can be seen in Fig. 5. The p-connections are shown as dotted lines, while the q-
connections are shown as full lines. 



 

Fig. 5. A part of the graph G. 

Thus, in order to disconnect G  , this cycle must be broken. This requires two vertex removals. 
However, if one of the 0,1,…,p−3,q,q+1,…,q+p−3 vertices is removed, the cycle can be “fixed” 
around that vertex as follows: 

 

If 0 is removed, we had previously for the cycle around 0: 

 

We fix it with: 

 

If i∈{1,2,…,p−3} is removed, we had previously for the cycle around i: 

 

We fix it with: 

 

If i∈{q,q+1,…,q+p−3} is removed, we had previously for the cycle around i: 

 

We fix it with: 



 

Fixing the cycle in two of the cases is shown in Fig. 6 and Fig. 7. 

 

Fig. 6. Fixing the cycle when the 0 vertex is removed. 

 

Fig. 7. Fixing the cycle when the q vertex is removed. 

Thus, if one of the 0,1,…,p−3,q,q+1,…,q+p−3 vertices is removed, at least another two vertex 
removals are required to disconnect the graph. 

Consider, however, the p  -class of vertex p−1. There are only two q  -connections in G   such 
that one of the adjacent vertices is in the p  -class of vertex p−1, namely the edge between 



the p−1 and q+p−1 vertices and the edge between the p−2 and q+p−2 vertices. Thus, removal of 
the p−2, p−1 vertices, the p−2,q+p−1 vertices, the p−1, q+p−2 vertices, or 
the q+p−1, q+p−2 vertices disconnects the p  -class of vertex p−1 from the rest of the graph G  . 
In the m=1 case, the p−1, q+p−2 vertices form the entire p  -class of vertex p−1; otherwise, 
removal of the p−1, q+p−2 vertices disconnects the graph G. 

Let us now consider the case when r>1. We can form a cycle between the p  -classes 
of G   similar to the cycle in the case above by making use of the r  -sets. The path 

 

denoted by p(i), visits all the p-classes in the r-set of vertex i. We also have that 

 

Note that r   and  are coprime. Thus, we have that the cycle 

p(0)→p(−pmodr)→⋯→p(r−(−pmodr)), 

which starts and ends at 0, visits all the p-classes in G. 

If this cycle is broken by removing one of the 0,1,…,p−3,q,q+1,…,q+p−3 vertices, it can be 
fixed in much the same way as above. Also, we have that removing the p−2,p−1 vertices, 
the q+p−1,q+p−2vertices, the p−2,q+p−1 vertices, or the p−1,q+p−2 vertices disconnects at least 
the r  -set of vertex  from the rest of G. Thus, we have our result.  □ 

Another topic of future research is to extend our approach to any number of periods. 

A World Wide Web server interface has been established 
at www.uncg.edu/cmp/research/finewilf4 for automated use of a program which given as input a 
number of holes h   and two periods p   and q  , outputsL(h,p,q) and an optimal word for that 
length. 
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