Skip to main content

Multi-Agent Systems for Biomedical Simulation: Modeling Vascularization of Porous Scaffolds

  • Conference paper
Agents in Principle, Agents in Practice (PRIMA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7047))

  • 1349 Accesses

Abstract

An interesting application of multi-agent systems (MAS) is in modeling systems that can be represented by independent entities interacting together, the so-called agent-based modeling (ABM). In this paper MAS paradigm is used as a promising technique for representing complex biomedical systems. A brief survey of some ABM of biomedical systems is presented, followed by the description of a multi-layered agent-based framework developed in our own labs to model the process of sprouting angiogenesis (blood vessel formation) within polymeric porous scaffolds used for regenerative medicine. The ABM structure developed and challenges in modeling systems with a large number of rapidly increasing interacting agents are discussed. 2D and 3D case studies are presented to investigate the impact of scaffold pore structure on vessel growth. MAS provides a valuable tool for studying highly complex biological and biomedical systems, and for investigating ways of intervening in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. An, G.: In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based modeling. Crit. Care Med. 32, 2050–2060 (2004)

    Article  Google Scholar 

  2. Artel, A.: Agent-based techniques in local, autonomous and adaptive decision-making. PhD dissertation: Illinois Institute of Technology (2010)

    Google Scholar 

  3. Artel, A., Mehdizadeh, H., Chiu, Y.-C., Brey, E.M., Cinar, A.: An Agent-Based Model for the Investigation of Neovascularization within Porous Scaffolds. Tissue Eng. Part A 17, 2133–2141 (2011)

    Article  Google Scholar 

  4. Ausk, B.J., Gross, T.S., Srinivasan, S.: An agent based model for real-time signaling induced in osteocytic networks by mechanical stimuli. J. Biomech. 39 (2006)

    Google Scholar 

  5. Autodesk 3ds Max Products: 3D modeling, animation and rendering software, http://usa.autodesk.com/3ds-max/

  6. Brey, E.M., McIntire, L.V., Johnston, C.M., Reece, G.P., Patrick, C.W.: Three-Dimensional, Quantitative Analysis of Desmin and Smooth Muscle Alpha Actin Expression During Angiogenesis. Ann. Biomed. Eng. 32, 1100–1107 (2004)

    Article  Google Scholar 

  7. Brey, E.M., Uriel, S., Greisler, H.P., Patrick Jr., C.W., McIntire, L.V.: Therapeutic Neovascularization: Contributions from Bioengineering. Tissue Engineering 11, 567–584 (2005)

    Article  Google Scholar 

  8. Brown, B.N., Price, I.M., Toapanta, F.R., Dealmeida, D.R., Wiley, C.A., Ross, T.M., Oury, T.D., Vodovotz, Y.: An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math. Biosci. 231, 186–196 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 14, 249–257 (2000)

    Article  Google Scholar 

  10. Chiu, Y.C., Cheng, M.H., Uriel, S., Brey, E.M.: Materials for Engineering Vascularized Adipose Tissue. J. Tissue Viability 20, 37–48 (2011)

    Article  Google Scholar 

  11. Da-Jun, T., Tang, F., Lee, T., Sarda, D., Krishnan, A., Goryachev, A.B.: Parallel Computing Platform for the Agent-Based Modeling of Multicellular Biological Systems. In: Liew, K.-M., Shen, H., See, S., Cai, W. (eds.) PDCAT 2004. LNCS, vol. 3320, pp. 5–8. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Dastani, M., van Riemsdijk, M.B., Winikoff, M.: Rich Goal Types in Agent Programming. In: Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 405–412 (2011)

    Google Scholar 

  13. Grant, M.R., Mostov, K.E., Tlsty, T.D., Hunt, C.A.: Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput. Biol. 2, e129, Epub. (2006)

    Article  Google Scholar 

  14. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)

    Article  Google Scholar 

  15. Levine, H.A., Nilsen-Hamilton, M.: Angiogenesis - A biochemical/mathematical perspective. In: Tutorials in Mathematical Biosciences III; Cell Cycle, Proliferation and Cancer, pp. 23–76 (2006)

    Google Scholar 

  16. Liu, G., Qutub, A.A., Vempati, P., Mac Gabhann, F., Popel, A.S.: Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Model. 8 (2011)

    Google Scholar 

  17. Muthukkaruppan, V.R., Kubai, L., Auerbach, R.: Tumor-induced neovascularization in the mouse eye. J. Natl. Cancer Inst. 69, 699–708 (1982)

    Google Scholar 

  18. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simulation 16, 1–25 (2006)

    Article  Google Scholar 

  19. O’Neil, C.A., Sattenspiel, L.: Agent-based modeling of the spread of the 1918-1919 flu in three Canadian fur trading communities. Am. J. Hum. Biol. 22, 757–767 (2010)

    Article  Google Scholar 

  20. Papavasiliou, G., Cheng, M.H., Brey, E.M.: Strategies for Vascularization of Polymer Scaffolds. J. Investig. Med. 58, 834–844 (2010)

    Article  Google Scholar 

  21. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based Simulation Platforms. Review and Development Recommendations Simulation 82, 609–623 (2006)

    Google Scholar 

  22. Repast Home Page: Repast Organization for Architecture and Design, Chicago, IL, http://repast.sourceforge.net/

  23. Rouwkema, J., Rivron, N.C., van Blitterswijk, C.A.: Vascularization in tissue engineering. Trends Biotechnol. 26, 434–441 (2008)

    Article  Google Scholar 

  24. Thorne, B.C., Bailey, A.M., DeSimone, D.W., Peirce, S.M.: Agent-based modeling of multicell morphogenic processes during development. Birth Defects Res. C. Embryo. Today. 81, 344–353 (2007)

    Article  Google Scholar 

  25. Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief. Bioinform. 8, 245–257 (2007)

    Article  Google Scholar 

  26. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: A unifying framework. In: Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 713–720 (2008)

    Google Scholar 

  27. Zhang, L., Chen, L.L., Deisboeck, T.S.: Multi-scale, multi-resolution brain cancer modeling. Math. Comput. Simul. 79, 2021–2035 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mehdizadeh, H., Artel, A., Brey, E.M., Cinar, A. (2011). Multi-Agent Systems for Biomedical Simulation: Modeling Vascularization of Porous Scaffolds. In: Kinny, D., Hsu, J.Yj., Governatori, G., Ghose, A.K. (eds) Agents in Principle, Agents in Practice. PRIMA 2011. Lecture Notes in Computer Science(), vol 7047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25044-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25044-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25043-9

  • Online ISBN: 978-3-642-25044-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics