Skip to main content

A Decision Theoretic Approach to Motion Saliency in Computer Animations

  • Conference paper
Motion in Games (MIG 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7060))

Included in the following conference series:

Abstract

We describe a model to calculate saliency of objects due to their motions. In a decision-theoretic fashion, perceptually significant objects inside a scene are detected. The work is based on psychological studies and findings on motion perception. By considering motion cues and attributes, we define six motion states. For each object in a scene, an individual saliency value is calculated considering its current motion state and the inhibition of return principle. Furthermore, a global saliency value is considered for each object by covering their relationships with each other and equivalence of their saliency value. The position of the object with highest attention value is predicted as a possible gaze point for each frame in the animation. We conducted several eye-tracking experiments to practically observe the motion-attention related principles in psychology literature. We also performed some final user studies to evaluate our model and its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, R.A., Christ, S.E.: Motion onset captures attention. Psychological Science 14, 427–432 (2003)

    Article  Google Scholar 

  2. Andersen, R.A.: Neural mechanisms of visual motion perception in primates. Neuron 26, 776–788 (1997)

    Google Scholar 

  3. Arnheim, R.: Art and Visual Perception, pp. 50–60. University of California Press (1954)

    Google Scholar 

  4. Bulbul, A., Koca, C., Capin, T., Güdükbay, U.: Saliency for animated meshes with material properties. In: Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization (APGV 2010), pp. 81–88. ACM, New York (2010)

    Google Scholar 

  5. Daly, S.: Engineering observations from spatiovelocity and spatiotemporal visual Models. In: Proc. SPIE, vol. 3299, pp. 180–191 (1998)

    Google Scholar 

  6. Halit, C., Capin, T.: Multiscale motion saliency for keyframe extraction from motion capture sequences. Computer Animation and Virtual Worlds 22(1), 3–14 (2011)

    Article  Google Scholar 

  7. Hillstrom, A.P., Yantis, S.: Visual motion and attentional capture. Perception - Psychophysics 55(4), 399–411 (1994)

    Article  Google Scholar 

  8. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  9. Kelly, D.H.: Motion and vision II. Stabilized spatio-temporal threshold surface. J. Opti. Soci. Ameri. 69(10), 1340–1349 (1979)

    Article  Google Scholar 

  10. Koffka, K.: Principles of Gestalt psychology, pp. 106–177. Harcourt Brace, New York (1935)

    Google Scholar 

  11. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: ACM SIGGRAPH 2005, pp. 659–666. ACM, New York (2005)

    Chapter  Google Scholar 

  12. Livingstone, M.: Vision and Art: The Biology of Seeing. ABRAMS, 46–67 (2002)

    Google Scholar 

  13. Peters, R.J., Itti, L.: Computational mechanisms for gaze direction in interactive visual environments. In: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications (ETRA 2006), pp. 27–32. ACM, New York (2006)

    Chapter  Google Scholar 

  14. Posner, M., Cohen, Y.: Components of visual orienting. In: Attention and Performance X, pp. 531–556 (1984)

    Google Scholar 

  15. Torriente, I., Valdes-Sosa, M., Ramirez, D., Bobes, M.: Vision evoked potentials related to motion onset are modulated by attention. Visual Research 39, 4122–4139 (1999)

    Google Scholar 

  16. Yantis, S., Hillstrom, A.P.: Stimulus driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance 20, 95–107 (1994)

    Google Scholar 

  17. Yee, H., Pattanaik, S., Greenberg, D.P.: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Transactions on Graphics 20(1), 39–65 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arpa, S., Bulbul, A., Capin, T. (2011). A Decision Theoretic Approach to Motion Saliency in Computer Animations. In: Allbeck, J.M., Faloutsos, P. (eds) Motion in Games. MIG 2011. Lecture Notes in Computer Science, vol 7060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25090-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25090-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25089-7

  • Online ISBN: 978-3-642-25090-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics