Skip to main content

An Automatic Grasp Planning System for Multi-fingered Robotic Hands

  • Chapter
  • First Online:
Towards Service Robots for Everyday Environments

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 76))

Abstract

Grasping is a key function of service robots to help people in handling their household tasks. In order to grasp real world objects, automatic grasp planning systems are needed. In this article, a complete grasp planning system is introduced, which can plan feasible grasps and execute them with real robotic hands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baier, T., Zhang, J.: Reusability-based semantics for grasp evaluation in context of service robotics. In: IEEE International Conference on Robotics and Biomimetics, pp. 703–708 (2006)

    Google Scholar 

  2. Borst, C., Fischer, M., Hirzinger, G.: Grasping the dice by dicing the grasp. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, pp. 3692–3697 (2003)

    Google Scholar 

  3. Borst, C., Fischer, M., Hirzinger, G.: Efficient and precise grasp planning for real world objects. In: Barbagli, F., Prattichizzo, D., Salisbury, K. (eds.) Multi-point Interaction with Real and Virtual Objects. STAR, vol. 18, pp. 91–111. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Buss, M., Hashimoto, H., Moore, J.B.: Dextrous hand grasping force optimization. IEEE Transactions on Robotics and Automation 12, 406–418 (1996)

    Article  Google Scholar 

  5. Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction for hand-independent dexterous robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3270–3275 (2007)

    Google Scholar 

  6. Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on Robotics and Automation, pp. 2290–2295 (1992)

    Google Scholar 

  7. Goldfeder, C., Allen, P.K., Lackner, C., Pelossof, R.: Grasp planning via decomposition trees. In: IEEE International Conference on Robotics and Automation, pp. 4679–4684 (2007)

    Google Scholar 

  8. Han, L., Trinkle, J.C., Li, Z.: Grasp analysis as linear matrix inequality problems. IEEE Transactions on Robotics and Automation 16, 663–674 (2000)

    Article  Google Scholar 

  9. Haschke, R., Steil, J.J., Steuwer, I., Ritter, H.: Task-oriented quality measures for dextrous grasping. In: Conference on Computational Intelligence in Robotics and Automation, IEEE (2005)

    Google Scholar 

  10. Kirkpatrick, D., Mishra, B., Keng Yap, C.: Quantitative steinitz’s theorems with applications to multifingered grasping. In: 20th ACM Symposium on Theory of Computing, pp. 341–351 (1990)

    Google Scholar 

  11. Liu, G., Li, Z.: Real-time grasping-force optimization for multifingered manipulation: theory and experiments. IEEE/ASME Transactions on Mechatronics 9, 65–77 (2004)

    Article  Google Scholar 

  12. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine 11(4), 110–122 (2004)

    Article  Google Scholar 

  13. Miller, A.T., Knoop, S., Christensen, H.I., Allen, P.K.: Automatic grasp planning using shape primitives. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1824–1829 (2003)

    Google Scholar 

  14. Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. Ph.D. thesis, University of California, Berkeley (1996)

    Google Scholar 

  15. Prats, M., Sanz, P.J., del Pobil, A.P.: Task-oriented grasping using hand preshapes and task frames. In: IEEE International Conference on Robotics and Automation, pp. 1794–1799 (2007)

    Google Scholar 

  16. Saut, J.-P., Remond, C., Perdereau, V., Drouin, M.: Online computation of grasping force in multi-fingered hands. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1223–1228 (2005)

    Google Scholar 

  17. Suárez, R., Roa, M., Cornellà, J.: Grasp quality measures. Tech. rep., Institute of Industrial and Control Engineering. Technical University of Catalonia (2006)

    Google Scholar 

  18. Wimboeck, T., Ott, C., Hirzinger, G.: Passivity-based object-level impedance control for a multifingered hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4621–4627 (2006)

    Google Scholar 

  19. Xue, Z., Kasper, A., Zöllner, J.M., Dillmann, R.: An automatic grasp planning system for service robots. In: 14th International Conference on Advanced Robotics, ICAR (2009)

    Google Scholar 

  20. Xue, Z., Woerner, P., Zöllner, J.M., Dillmann, R.: Efficient grasp planning using continuous collision detection. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 2752–2758 (2009)

    Google Scholar 

  21. Xue, Z., Zöllner, J.M., Dillmann, R.: Automatic optimal grasp planning based on found contact points. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1053–1058 (2008)

    Google Scholar 

  22. Xue, Z., Zöllner, J.M., Dillmann, R.: Planning regrasp operations for a multifingered robotic hand. In: IEEE Conference on Automation Science and Engineering (CASE), pp. 778–783 (2008)

    Google Scholar 

  23. Zhang, X., Lee, M., Kim, Y.J.: Interactive continuous collision detection for non-convex polyhedra. In: Pacific Graphics (2006)

    Google Scholar 

  24. Zhang, X., Redon, S., Lee, M., Kim, Y.J.: Continuous collision detection for articulated models using taylor models and temporal culling. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26(3) (2007)

    Google Scholar 

  25. Zhu, X., Wang, J.: Synthesis of force-closure grasps on 3-d objects based on the q distance. IEEE Transactions on Robotics and Automation, 669–679 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixing Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Xue, Z., Rühl, S.W., Zöllner, J.M., Dillmann, R. (2012). An Automatic Grasp Planning System for Multi-fingered Robotic Hands. In: Prassler, E., et al. Towards Service Robots for Everyday Environments. Springer Tracts in Advanced Robotics, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25116-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25116-0_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25115-3

  • Online ISBN: 978-3-642-25116-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics