Skip to main content

Grasping Objects of Unknown Geometry with Tactile Feedback

  • Chapter
  • First Online:
Towards Service Robots for Everyday Environments

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 76))

  • 1821 Accesses

Abstract

Service robots operating in unconstrained environments like our homes need to be able to grasp and manipulate all kinds of objects, even if they are not known in advance.While many common approaches for grasping rely on detailed geometric models of the objects to perform a grasp optimization process in simulated scenes, we propose a model-free approach which relies on tactile feedback and coarse shape estimation from vision. Tactile sensor arrays continuously shrink in size and become available for small-size finger tips these days, allowing us to consider more natural approaches to grasping. Evaluating this grasping approach on two different hands, the anthropomorphic Shadow Dexterous Hand and the three-fingered Schunk Dexterous Hand, we prove the feasibility and portability of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brock, O., Fagg, A., Grupen, R.A., Platt, R., Rosenstein, M., Sweeney, J.: A framework for the development of robot behavior. The International Journal of Humanoid Robotics 2(3) (2005)

    Google Scholar 

  2. Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., Hirzinger, G.: Design and experiences with DLR Hand II. In: Proc. World Automation Congress, Seville (2004)

    Google Scholar 

  3. Ch Borst, M.F., Hirzinger, G.: Calculating hand configurations for precision and pinch grasps. In: Proc. IROS, pp. 1553–1559 (2002)

    Google Scholar 

  4. Ch Borst, M.F., Hirzinger, G.: Grasping the dice by dicing the grasp. In: Proc. IROS, Las Vegas, vol. 3, pp. 3692–3697 (2003)

    Google Scholar 

  5. Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction for hand-independent dexterous robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 3270–3275 (2007)

    Google Scholar 

  6. Cutkosky, M., Howe, R.D.: Human grasp choice and robotic grasp analysis. In: Venkataraman, S.T., Iberall, T. (eds.) Dextrous Robot Hands, Springer (1990)

    Google Scholar 

  7. Goldfeder, C., Ciocarlie, M., Dang, H., Allen, P.K.: The Columbia Grasp Database. In: IEEE Intl. Conf. on Robotics and Automation (2009)

    Google Scholar 

  8. Han, L., Trinkle, J.C., Li, Z.: Grasp analysis as linear matrix inequality problems. IEEE Trans. Robotics and Automation 16(6), 663–674 (2000)

    Article  Google Scholar 

  9. Haschke, R., Steil, J.J., Steuwer, I., Ritter, H.: Task-oriented quality measures for dextrous grasping. In: Proc. CIRA, Helsinki (2005)

    Google Scholar 

  10. Helmke, U., Hüper, K., Moore, J.B.: Quadratically convergent algorithms for optimal dextrous hand grasping. IEEE Trans. Robotics and Automation 18(2), 138–146 (2002)

    Article  Google Scholar 

  11. Lebedev, D., Klanke, S., Haschke, R., Steil, J., Ritter, H.: Dynamic path planning for a 7-dof robot arm. In: Proc. IROS (2006)

    Google Scholar 

  12. Lovchik, C.S., Diftler, M.A.: The Robonaut Hand: A Dexterous Robot Hand for Space. In: Proc. ICRA, Detroit (1999)

    Google Scholar 

  13. Mallon, W., Brown, H., Nunley, J.: Digital ranges of motion: Normal values in young adults. Journal of Hand Surgery 16A(5), 882–887 (1991)

    Google Scholar 

  14. McGuire, P., Fritsch, J., Ritter, H., Steil, J., Röthling, F., Fink, G.A., Wachsmut, S., Sagerer, G.: Multi-modal human-machine communication for instructing robot grasping tasks. In: IROS, pp. 1082–1089 (2002)

    Google Scholar 

  15. Miller, A.T.: Graspit!: A versatile simulator for robotic grasping. PhD thesis, Dep. Computer Science, Columbia University (2001)

    Google Scholar 

  16. Miller, A.T., Knoop, S., Allen, P.K., Christensen, H.I.: Automatic grasp planning using shape primitives. In: ICRA, pp. 1824–1829 (2003)

    Google Scholar 

  17. Murry, M.R., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press (1994)

    Google Scholar 

  18. Nagai, Y., Hosada, K., Morita, A., Asada, M.: A constructive model for the development of joint attention. Connection Science 15(4), 211–229 (2003)

    Article  Google Scholar 

  19. Röthling, F., Haschke, R., Steil, J.J., Ritter, H.: Platform portable anthropomorphic grasping with the bielefeld 20-DOF shadow and 9-DOF TUM hand. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2951–2956. IEEE, San Diego (2007), doi:10.1109/IROS.2007.4398963

    Chapter  Google Scholar 

  20. Schöpfer, M., Schmidt, F., Pardowitz, M., Ritter, H.: Open source real-time control software for the Kuka light weight robot. In: 2010 8th World Congress on Intelligent Control and Automation, pp. 444–449. IEEE, Jinan (2010), doi:10.1109/WCICA.2010.5553773

    Chapter  Google Scholar 

  21. Schulz, S., Pylatiuk, C., Bretthauer, G.: A new ultralight robotic hand. In: Proc. ICRA, Seoul (2001)

    Google Scholar 

  22. Shadow Robot Company (2004) The Shadow Dextrous Hand, http://www.shadow.org.uk/products/newhand.shtml

  23. Steil, J., Röthling, F., Haschke, R., Ritter, H.: Situated robot learning for multi-modal instruction and imitation of grasping. Robotics and Autonomous Systems Special Issue on Robot Learning by Demonstration (47), 129–141 (2004)

    Google Scholar 

  24. Zhu, X., Ding, H., Wang, J.: Grasp analysis and synthesis based on a new quantitative measure. IEEE Trans. Robotics and Automation 19(6), 942–953 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Haschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Haschke, R., Schöpfer, M., Ritter, H. (2012). Grasping Objects of Unknown Geometry with Tactile Feedback. In: Prassler, E., et al. Towards Service Robots for Everyday Environments. Springer Tracts in Advanced Robotics, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25116-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25116-0_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25115-3

  • Online ISBN: 978-3-642-25116-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics