Abstract
Nowadays, climate changes are impacting life on Earth; ecological effects as warming of sea-surface temperatures, catastrophic events as storms or mudslides, and the increase of infectious diseases, are affecting life and development. Unfortunately, experts predict that global temperatures will increase even more during the next years; thus, to decide how to assist possibly affected people, experts require tools that help them to discover potential risky regions based on their weather conditions. We address this problem and propose a tool able to support experts in the discovery of these risky areas. We present CAREY, a federated tool built on top of a weather database, that implements a semi-supervised data mining approach to discover regions with similar weather observations which may characterize micro-climate zones. Additionally, Top-k Skyline techniques have been developed to rank micro-climate areas according to how close they are to a given weather condition of risk. We conducted an initial experimental study as a proof-of-concepts, and the preliminary results suggest that CAREY may provide an effective support for the visualization of potential risky areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acosta, M., Vidal, M.-E., Castillo, J., Lampo, T., Ruckhaus, E.: ANAPSID: AN Adaptive query ProcesSing engIne for sparql enDpoints. In: Accepted at ISWC 2011 (2011)
Balke, W.-T., Guntzer, U.: Multi-objective query processing for database systems. In: VLDB, pp. 936–947 (2004)
Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient Distributed Skylining for Web Information Systems. In: Hwang, J., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer, Heidelberg (2004)
Basak, J., Sudarshan, A., Trivedi, D., Santhanam, M.S.: Weather data mining using independent component analysis. Journal of Machine Learning Research 5, 239–253 (2004)
Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, pp. 421–430. IEEE Computer Society, Washington, DC (2001)
Carey, J.: Our extreme future: Predicting and coping with the effects of a changing climate. Scientific American 6 (2011)
Carey, M.J., Kossmann, D.: On saying “Enough already!” in SQL. SIGMOD Rec. 26(2), 219–230 (1997)
Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 503–514. ACM, New York (2006)
Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)
Chen, L., Gao, S., Anyanwu, K.: Efficiently Evaluating Skyline Queries on RDF Databases. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 123–138. Springer, Heidelberg (2011)
de Sherbinin, A., Warner, K., Ehrhart, C.: Casualties of climate change: Sea-level rises could displace tens of millions. Scientific American 1 (2011)
Goncalves, M., Vidal, M.-E.: Reaching the Top of the Skyline: An Efficient Indexed Algorithm for Top-k Skyline Queries. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 471–485. Springer, Heidelberg (2009)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: The analysis of a simple -means clustering algorithm. In: Symposium on Computational Geometry, pp. 100–109 (2000)
Mithal, V., Garg, A., Boriah, S., Steinbach, M., Kumar, V., Potter, C., Klooster, S.A., Castilla-Rubio, J.C.: Monitoring global forest cover using data mining. ACM TIST 2(4), 36 (2011)
Pelleg, D., Moore, A.W.: X-means: Extending k-means with efficient estimation of the number of clusters. In: ICML, pp. 727–734 (2000)
Race, C., Steinbach, M., Ganguly, A., Semazzi, F.H.M., Kumar, V.: A knowledge discovery strategy for relating sea surface temperatures to frequencies of tropical storms and generating predictions of hurricanes under 21st-century global warming scenarios. In: CIDU, pp. 204–212 (2010)
Steinbach, M., Tan, P.-N., Kumar, V., Klooster, S.A., Potter, C.: Discovery of climate indices using clustering. In: KDD, pp. 446–455 (2003)
Vlachou, A., Vazirgiannis, M.: Link-based Ranking of Skyline Result Sets. In: Proceedings of the 3rd Multidisciplinary Workshop on Advances in Preference Handling, M-Pref (2007)
Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Computer 25(3), 38–49 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Acosta, M., Goncalves, M., Vidal, ME. (2011). CAREY: ClimAtological ContRol of EmergencY Regions. In: Meersman, R., Dillon, T., Herrero, P. (eds) On the Move to Meaningful Internet Systems: OTM 2011 Workshops. OTM 2011. Lecture Notes in Computer Science, vol 7046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25126-9_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-25126-9_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25125-2
Online ISBN: 978-3-642-25126-9
eBook Packages: Computer ScienceComputer Science (R0)